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1. INTRODUCTION

The agricultural sector is a significant portion of GDP and employment in most developing coun-
tries today, and historically made up a large fraction of both in currently developed countries. As
such, agricultural production has been of interest to economists studying the process of develop-
ment and growth. A prominent view of the importance of agriculture for development comes from
T. W. Schultz’s (1953) characterization of the “food problem”; until countries can produce a sufficient
amount of food, labor is trapped in agriculture and they cannot begin the process of modern growth.
This idea has been carried forward by others, such as Johnston and Mellor (1961), Johnston and Kilby
(1975), and Mellor (1995). Gollin (2010) provides an overview of this line of thinking, which implies
that increased agricultural productivity is a key to structural transformation and subsequent economic
development in response to productivity shocks. McMillan, Rodrik, and Verduzco-Gallo (2014) ar-
gue that this structural transformation remains an important source of potential economic growth in
sub-Saharan Africa.

In this paper we emphasize that the positive effects of agricultural productivity improvements – i.e.
higher total factor productivity (TFP) or the increased use of non-labor inputs – depend crucially on
agricultural technology. Specifically, we define agricultural technology as the elasticity of agricul-
tural output with respect to labor. We first show that in a standard model of structural change this
technology affects the pace of development. In particular, an economy with a low labor elasticity will
experience larger shifts of labor between sectors, greater increases in agricultural labor productivity,
and greater increases in GDP per capita than an economy with a high elasticity after any kind of
productivity increase in agriculture. The logic of this result rests on the importance of labor in the
agricultural technology, which is captured by the elasticity. If the elasticity is low, then agricultural
output is insensitive to the number of workers in that sector. A productivity increase makes it possible
to release a large number of workers and still meet the demand for food. These freed-up workers are
available to produce non-agricultural goods, raising GDP per capita. In contrast, a large elasticity
implies that agricultural output is very sensitive to the number of workers. Even with a productivity
increase, few workers can leave agriculture without decreasing production below what is demanded.
Hence high-elasticity economies do not shift as many workers out of agriculture and are able to pro-
duce fewer additional non-agricultural goods in response. Real GDP per capita rises, but not by as
much as seen in economies with a low elasticity.

Given this theoretical distinction, we then undertake two tasks, one empirical and one quantitative.
The empirical task is to estimate agricultural production functions for a panel of 128 countries using
annual data over a long time horizon. We adopt an empirical framework that allows for heterogene-
ity in technology as well as for common shocks to production and/or technology spillovers between
countries (‘cross-sectional dependence’). The common factor model framework employed is particu-
larly suited to this type of analysis, where a primary concern is an unobserved TFP term (Bai, 2009;
Chudik, Pesaran, and Tosetti, 2011). This empirical setup speaks directly to Matsuyama’s (2009)
criticism of empirical studies of structural change as being analysed “under the false assumption that
each country offers an independent observation” (484).

The heterogeneous technology setup we allow in our empirical analysis takes into account Hayami
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and Ruttan’s (1970) claim that technology differences between countries are likely to be substantial.
Subsequent research – including Hayami and Ruttan’s (1985) own work – has tended to ignore this
claim and work with homogenous technology parameters.1 The closest studies to our work here are
Mundlak, Larson, and Butzer (2012), Eberhardt and Teal (2013a), and Eberhardt and Teal (2013b).
These papers show that common technology across countries is rejected by the data, although technol-
ogy parameters appear to be constant over time within countries. While those papers focus primarily
on establishing the presence of technology heterogeneity, in this study we explore the agro-climatic
patterns of technology heterogeneity and their implications for development.

Our results indicate that while on average the labor elasticity of agriculture (our measure of technol-
ogy) is about 0.3, there is wide variation in this value based on climate type. Countries with primarily
temperate climate have elasticities of approximately 0.15, while tropical and highland countries have
an elasticity that ranges from 0.35 to 0.55. The relationship of the elasticity and climate zone is not an
artefact of development levels, as the patterns of our country-specific estimates of the labor elasticities
do not align systematically with income per capita.

The second, quantitative, task we pursue is to assess the role that agricultural technology plays in
structural change and development. We calibrate our standard two-sector model of labor allocations
between agriculture and non-agriculture. This type of model has been used by Duarte and Restuccia
(2010), Restuccia, Yang, and Zhu (2008), and Gollin, Parente, and Rogerson (2007) among oth-
ers to quantitatively study structural change and development.2 We calibrate the model using data
from South Korea between 1963–2005. In this period South Korea experienced a significant shift
of labor out of agriculture, as well as major increases in labor productivity in both agriculture and
non-agriculture. It therefore serves as a useful benchmark for evaluating the effects of productivity
increases on sectoral shifts in developing countries.

Using the calibrated model we examine the effect of an increase in agricultural total factor produc-
tivity (TFP) on sectoral labor shares, consumption levels, and real GDP per capita for developing
economies that begin with 80% of their workforce in agriculture. The model economies we examine
are identical in their initial labor shares and consumption levels. With a labor elasticity in agriculture
of 0.15, such as in temperate regions, a 20% increase in agricultural TFP reduces the agricultural
labor share to under 40%, more than doubles real labor productivity in agriculture, and increases real
GDP by about 50%. In contrast, an economy with a labor elasticity in agriculture of 0.55, such as in
equatorial or highland regions, the same 20% increase in agricultural TFP only reduces agricultural
labor to 60%, increases labor productivity in agriculture by only 37%, and increases real GDP per
capita by only 22%. This is a 2-3 fold advantage for the low-elasticity economy, even though the
improvement to agricultural productivity was identical.

The situation is not universally favorable to countries with low labor elasticities in agriculture, though.

1Examples include Craig, Pardey, and Roseboom (2007), Martin and Mitra (2002), and Mundlak (2000). Gutierrez
and Gutierrez (2003) and Wiebe, Soule, Narrod, and Breneman (2003) all split their samples by geographical region,
generally confirming different agricultural technology across regions.

2This literature almost invariably uses the assumption that agricultural technology is homogenous across countries,
with Vollrath (2011) as one exception.
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Just as they are able to move large amounts of labor out of agriculture when productivity rises, they
are also forced to move large amounts of labor in to agriculture when population rises, which acts like
a decline in productivity. A 5% increase in population will take the agricultural labor share from 80%
to 94% in an economy with a labor elasticity of 0.15, while the same increase in population will only
raise the labor share from 80% to 82% when the elasticity is 0.55. The population increase drops real
GDP per capita by 15% when the elasticity is 0.15, but only by 2.5% if the elasticity is 0.55.

Agricultural technology therefore does not provide a unique indicator of development possibilities.
What is crucial is the gain in agricultural productivity relative to population growth. So long as the
productivity increases out-run population growth, a low elasticity economy will develop faster than a
high-elasticity one. To understand just what a dramatic difference this can make over the long run, we
feed the observed changes in agricultural productivity, non-agricultural productivity, and population
growth from South Korea 1963–2005 through the model using different values of the labor elasticity.
For an economy with an elasticity of 0.15, this reduces the agricultural labor share from 80% to less
than 5%, while raising GDP per capita by a factor of 4.6. In an economy with an elasticity of 0.55,
the labor share drops from 80% to 13%, while GDP per capita only rises by a factor of 3.9. Differing
solely in their agricultural technology, the economies end up with a significant difference in living
standards despite having access to the same productivity improvements and experiencing the same
population growth rate.

These results suggest that a “one-size-fits-all” approach to thinking about agricultural productivity
and structural change is not warranted. There are significant differences in agricultural technology
across countries, and these differences determine the degree to which an economy can take advan-
tage of productivity improvements or suffer from population increases. Slow migration rates from
rural to urban areas (de Brauw, Mueller, Lee, 2014) and the subsequent inability to exploit urban
agglomeration effects (Tiffen, 2003; Dorosh and Thurlow, 2014) within Africa may be the result of
tropical agriculture’s relatively high labor elasticity. While agricultural productivity improvements
may be necessary to drive economic growth (Diao, Hazell, and Thurlow, 2010; Collier and Dercon,
2014), our results show that tropical agriculture will require a greater scale of improvements com-
pared to temperate countries. We cannot expect that all developing countries will respond similarly
to productivity-enhancing policies in agriculture, and the past experience of temperate countries may
not be a useful benchmark for tropical countries today.

The paper proceeds as follows. In the next section we introduce our simple dual economy model and
derive our theoretical results. Section 3 discusses the data, empirical setup and regression results.
Having established the variation in the labor elasticity from these estimation, we then present our
calibration and counterfactual exercises in Section 4. The final section concludes.

2. AGRICULTURAL TECHNOLOGY AND STRUCTURAL CHANGE

To understand the impact of agricultural technology in contrast to agricultural productivity we use a
simple model of the process of structural change and development. There are two sectors: agriculture
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and non-agriculture. Individuals face a subsistence constraint for agricultural goods that makes the
income elasticity less than one, and they are endowed with some units of non-agricultural goods that
ensure the income elasticity of these goods is greater than one. The model shares its structure with
that found in recent work by Alvarez-Cuadrado and Poschke (2011), Duarte and Restuccia (2010)
and Herrendorf, Rogerson, and Valentinyi (2013). Within the model, agriculture is produced using
land and labor, and the agricultural technology is captured by the elasticity of agricultural output with
respect to labor. The model will show that the response of the agricultural labor share to a shock in
productivity depends on agricultural technology. In particular, economies with low labor elasticities
will experience more rapid structural change than economies with high elasticities.

2.1 Production

The production function for agriculture is

Ya = ALβL
a , (1)

where La is labor employed in agriculture, and βL is the elasticity of output with respect to that labor.
This parameter will be the focus of our analysis, and we will show below in the empirical section that
this parameter varies widely across different types of crop systems.3

Production in the non-agricultural sector is assumed to be linear in labor, Ln, with

Yn = wLn (2)

where w is labor productivity in that sector.4 Finally, an adding-up constraint holds for total workers
L such that

L = La + Ln. (3)

2.2 Preferences and Individual Optimization

There are L individuals in this economy with preferences of

U = α ln (ca − ca) + (1−α) ln (cn + cn), (4)

3The productivity term A captures both total factor productivity and the effects of any other inputs used in agriculture.
Assuming that the production function is Cobb-Douglas over labor and a set of k other inputs, then we could write A as
A= T F Pa

∏k
i=1 X βi

i . If we further assumed constant returns to scale, as will be indicated in the empirical work, then we
are assuming that

∑k
i=1 βi = 1− βL .

4The assumption that non-agricultural output is linear with respect to labor is not crucial. One can think of our
production function for Yn as representing a more general Cobb-Douglas case with Yn = T F PnKαL1−α

n , but where either
(a) the economy is open to capital flows and so the K/Yn ratio is fixed by the world rate of return on capital, or (b) the
economy is in steady state where the K/Yn ratio is fixed by the time preferences of individuals in the economy. In either
case, w= T F Pn(K/Yn)α/(1−α.
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where ca and cn are consumption of agricultural goods and non-agricultural goods, respectively. The
terms ca and cn are subsistence/endowment terms. By including them we will be able to capture the
regularities in the data regarding expenditure shares on agriculture and non-agriculture. The subsis-
tence constraint for food will ensure that the income elasticity is less than one, while the endowment
of non-agricultural goods makes the income elasticity for those goods greater than one.

Income will be made up solely of a wage, w, earned by individuals from providing labor. Their budget
constraint is thus

w= paca + cn (5)

where pa is the price of food relative to non-agricultural goods, and non-agricultural goods are the
numeraire. Utility optimization given this constraint is straightforward, and leads to the following
expressions for expenditures on the two goods

paca = α(w− paca + cn) + paca (6)
cn = (1−α)(w− paca + cn)− cn.

Individuals will spend a fraction of their surplus income (given in the parentheses) equal to the weight
in the utility function on the two goods. This is modified by the amount they must additionally spend
on subsistence agricultural goods (in the first equation), and the lower amount they must spend on
non-agricultural goods (in the second). To be clear, the value of ca is consumption of purchased
agricultural goods, although only ca−ca of that consumption provides utility. Similarly, the value of cn

is consumption of purchased non-agricultural goods, while cn+ cn is the total amount of consumption
of non-agricultural goods that provide utility.

2.3 Equilibrium Allocations of Labor

We assume that agricultural productivity is sufficiently high that the economy can meet the subsistence
constraint for all individuals. Specifically, we presume that

A> ca L1−βL . (7)

Thus, if all workers are engaged in agriculture, they produce enough to provide more than ca to
each individual. This assumption simply ensures that there is a meaningful allocation of workers to
agriculture, or La < L.

We further assume that labor moves freely between sectors to equalize earnings. In agriculture we
assume that wages are equal to the average product of labor, implying that there are no rents to land-
owners or the owners of other factors. If there were perfect factor markets, the wage in agriculture
would be paβLYa/La, and the size of βL would influence the allocation of labor through wage equal-
ization as well as through the shape of the production function. The assumption that labor earns its
average product in agriculture removes the direct effect of labor’s share of output on labor allocation,
allowing us to focus solely on the effect of βL on the curvature of the production function. Hence we

6



have that
w= pa

Ya

La
. (8)

Finally, to solve for the labor allocations we need that supply and demand are equal in both sectors,
or

ca L = Ya (9)
cn L = Yn.

Given the static nature of the model it is straightforward to determine an equilibrium:

Equilibrium: Given productivity levels A and w, total population L, a value of βL, and subsistence
terms ca and cn, an equilibrium in the model consists of allocations of labor La and Ln, and a price of
agricultural goods relative to non-agriculture (pa), such that expenditures are optimal as in (6), the
wage is equalized across sectors as in (8), and all labor is utilized as in (3).

The comparative statics in equilibrium are straightforward. The model is a simplified version of the
ones found in Duarte and Restuccia (2010) and Alvarez-Cuadrado and Poschke (2011). As such, all
the standard results follow. In particular, it is straightforward to show that in response to an increase
in agricultural productivity, A, the following changes take place,

• Agricultural labor declines: ∂ La
∂ A

A
La
< 0

• Agricultural consumption increases: ∂ ca
∂ A

A
ca
> 0

• Agricultural labor productivity rises: ∂ Ya/La
∂ A

A
Ya/La

> 0

• Relative price of agriculture falls: ∂ pa
∂ A

A
pa
< 0

If we instead considered an increase in population, L, then this acts essentially as a reduction in
productivity, and the predicted responses would simply flip sign.

Agricultural technology (i.e. the value of βL) does not change these qualitative predictions. However,
βL does have a distinct effect on the magnitude of the changes following a change in productivity.
The following proposition establishes this formally.

Proposition 1: The absolute values of the elasticities of the responses to an increase in agricultural
productivity, A, are decreasing in the size of βL. In particular,

•
�

�

�

∂ La
∂ A

A
La

�

�

� falls as βL rises

•
�

�

�

∂ ca
∂ A

A
ca

�

�

� falls as βL rises

•
�

�

�

∂ Ya/La
∂ A

A
Ya/La

�

�

� falls as βL rises
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•
�

�

�

∂ pa
∂ A

A
pa

�

�

� falls as βL rises

Proof: See Appendix.

When βL is large, the effect of a productivity shock is muted compared to when βL is small. Given our
empirical results, this implies that temperate areas (low βL) will experience faster structural change
and increases in labor productivity in response to productivity improvements when compared to equa-
torial or highland zones (high βL).

What is driving this result? The value of βL dictates how the labor productivity in agriculture is related
to the number of agricultural workers. Large values of βL imply that the labor productivity is relatively
insensitive to the number of workers. Consider the extremes. If βL = 1, then labor productivity is
simply equal to A. If A rises, then labor productivity rises by the same proportion, allowing some
labor to be released to non-agriculture while still meeting demand for food. In contrast, consider the
situation when βL approaches zero, and labor productivity approaches A/La. Now, when A rises labor
productivity rises directly, but also rises due to the decline in La. This extra boost to labor productivity
means that even fewer individuals are required in the agriculture sector to meet demand.

It is easiest to see the mechanism at work by limiting individuals to consuming precisely ca at all
times. As will be seen in the simulations, the implied changes in ca are very small, and hence this
is not a particularly strong assumption. With everyone consuming precisely ca in agricultural goods,
setting ca L = Ya yields

La

L
=

�

ca L1−βL

A

�1/βL

, (10)

as a solution. Note that the effect of a change in A is to lower La/L, regardless of the value of βL.
However, the elasticity of this effect is 1/βL: as βL falls, this elasticity becomes larger.5

It is important to note here that the results in Proposition 1 refer to the elasticity of changes with
respect to changes in A. They do not imply anything about the absolute level of La/L, Ya/La, or other
quantities. The level of A still dictates the distribution of labor across sectors, and it is quite possible
for a country with a large value of βL to also have a large value for A.

2.4 The Open Economy

Thus far we have presumed a closed economy. If the economy is open to trade, then the qualitative
predictions of the model change, as higher agricultural productivity would lead to more workers in
agriculture. However, the quantitative change in La would still depend on βL. To see this, note that

5The elasticity with respect to A is made holding L constant. One can also see from equation (10) that the elasticity of
La/L with respect to L falls with βL .

8



for a given world price, p∗a, using (8) the equilibrium allocation of labor to agriculture is

La =

�

p∗aA

w

�1/(1−βL)

(11)

regardless of the utility function for agriculture and non-agriculture.

Examining this allocation rule, we see that the effect of productivity and/or world price changes
depend on βL. The elasticity of La with respect to A is 1/(1− βL) > 0, which is increasing in βL. In
our setting, this shift of labor has no ultimate effect on real output per worker, as that is pinned down
by w.6 Despite the change in the sign of the effect of A on the labor allocation, the strength of the
effect remains dependent on βL. In the quantitative results below, we will examine the strength of this
effect in an open economy, and will find it is substantial.

There could be long-run effects of differences in βL if productivity growth (in either sector) depends
on the size of that sector. In a model similar to ours, Matsuyama (1992) proposed that comparative
advantage in agriculture would lead to slower growth if there were learning-by-doing effects in non-
agriculture. If this were the case, then having a large βL value would be particularly bad for future
growth as it leads to an even greater specialization in agriculture when the economy is open.7

3. DATA, EMPIRICAL STRATEGY AND RESULTS

Theoretically, then, agricultural technology in the form of β will influence the pace of development.
However, this is only an interesting theoretical issue if the value of β in our data does indeed vary
across countries. In this section we establish that there is significant variation across countries in this
technology parameter.

To do this, we estimate agricultural production function using cross-country panel techniques that
explicitly accomodate heterogeneity in coefficients across countries. Heterogeneity in the estimated
coefficients of the production function is precisely what we mean by “technology heterogeneity”.
Once we have estimates of the production function coefficients for each country, we show that those
coefficients vary systematically with climate.

6Recall from above that a constant w is consistent with either an economy open to capital flows and/or the steady state
of an economy with endogenous savings. Even if non-agricultural output per worker, w, rises temporarily because of the
shift of labor into agriculture, this will be offset by declines in capital induced by international capital movements or the
lower return to capital in non-agriculture.

7Several recent papers have concerned themselves with the importance of trade for structural change, typically using
South Korea as example (Sposi, 2012; Teignier, 2012; Betts, Giri, and Verma, 2013; Uy, Yi, and Zhang, 2013). In these
papers a combination of shifts in world prices, trade costs, and productivity are used to match the observed structural
transformation of the Korean economy. Heterogeneity in agricultural technology across countries does not invalidate this
work. However, our findings imply that these models would have very different quantitative predictions for countries that
do not share the same agricultural technology as Korea.
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3.1 Data

The United Nation Food and Agriculture Organization’s (FAO) FAOSTAT database is the principle
source for our agricultural production data. This contains annual data for net agricultural output (in
thousands of real International $), labor, capital stock (using tractors as a proxy), livestock, fertilizer
and arable and permanent crop land for 128 countries over the 1961–2002 period. Country-specific
information on the share of arable land by climate zones (adopting the Köppen-Geiger classification)
are taken from Matthews (1983). We provide more details, including descriptive statistics, in the
Appendix. We carried out panel unit root tests (results available on request) which could not reject
the null that these data constitute nonstationary processes. We also investigated the cross-section
correlation properties of the data (results available on request) and found strong evidence for a ‘fac-
tor structure’ in the productive inputs and output — the nature of this property is discussed in the
following subsection.

3.2 Empirical Model

Our model of production aims to capture a number of important features: firstly, we want to allow
for endogenous production inputs, an issue which has been the primary focus of the literature on
cross-country empirical analysis; secondly, we want to model TFP in a very flexible manner, such
that it can contain both country-specific and common elements (i.e. spillovers), while also not being
constrained to linearity; thirdly, time series properties of macro panel data, most notably the potential
for nonstationary inputs and/or TFP, need to be accommodated; finally, and this represents the main
focus of our study, we want to allow for technology heterogeneity across countries following an
unspecified pattern (i.e. we do not assume that technology is identical within continents or other ad
hoc groupings).

In order to capture these characteristics we adopt the following (log-linearised) Cobb-Douglas pro-
duction function for country i = 1, . . . , N at time t = 1, . . . , T

Yi t = β
′
iXi t + ui t , (12)

where X is the set of inputs and Y is output (all in logarithms). In practice we use these observable
variables in per worker terms, since then the inclusion of the labor variable provides a test for constant
returns to scale.8 Technology (βi) differs across countries but is constant over time.9 The vector βi

contains a coefficient for each input, including labor, which is the input we are ultimately interested
in.10

8A statistically significant positive (negative) labor coefficient indicates increasing (decreasing) returns to scale, in-
significance points to constant returns which can then be imposed by dropping the labor variable from the model.

9We empirically tested this assumption adopting recursive regression models. While average estimates by climate
zone change over time as we add further years to the regression sample, we can show that these changes are driven by
sample size, rather than systematic differences over time (results available on request).

10To be more precise, the labor coefficient is backed out from the estimates on all other inputs (in per worker terms)
and the returns to scale estimate — see footnote 8 above.
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Total factor productivity (u), is unobserved, and this is the source of identification issues: ifXi t is cor-
related with u then we will receive biased estimates of β. By adopting a common factor framework,
we will be able to account for country/year variation in productivity. Formally, let

ui t = αi + γ
′
ift + εi t . (13)

TFP consists of (1) a country-specific TFP level term αi which captures time-invariant aspects; (ii)
a country-time-specific element in form of a vector of common factors f interacted with country-
specific parameters γi; and (iii) remaining country-time variation in εi t that is assumed to be uncor-
related withXi t .

The country-specific term αi is handled by including country-level fixed effects. The common factors
term deserves further explanation. ft is a vector with an arbitrary number of factors that represent
‘shocks’ which affect all countries, although their response to these factors is country-specific, which
is what γi denotes. Shocks here can refer to events like the global financial crisis, but also secular
processes such as the economic rise of China or the evolution of knowledge spillovers in agriculture.
These individual factors are orthogonal to each other, so that it is easy to see that we can obtain a
highly idiosycratic ‘trend’ for country i if we combine a small number of these factors and country-
specific parameter.

So far we have only given some structure to the unobservable TFP evolution. Where does the endo-
geneity problem come into the equation? Inputs are deemed endogenous because we believe inputs
are a function of TFP, the measure of ignorance of everything explicitly omitted from our production
function. Our empirical model mimics this by specifying that (some of) the same common factors ft

making up TFP also affect the inputs: ui t andXi t are correlated.

To estimate (12) we use recent panel time series estimators, in particular the common correlated
effects estimation approach introduced in Pesaran (2006). Its implementation is very simple, building
on the basic insight that since the unobserved factors (ft) are common to all countries we can use
information from the entire panel to proxy for them. And if we have sound proxies for them in
the regression, then we no longer have an identification problem for β, since the unobservable error
term is now no longer ui t but εi t . The interested reader is referred to Eberhardt and Teal (2013b) or
Eberhardt, Helmers and Strauss (2013) for a deeper discussion of the technique, but the intuition is
straightforward. By including the cross-section averages of the dependent (Y t) and all independent
variables (X t) in our actual estimation, we will implicitly be controlling for the unobserved factors ft .
This leaves us merely with the problem of the country-specific impact of the common factors, which
is simply addressed by estimating the agricultural production function separately for each country.
The technique has been shown to be extremely powerful in this type of panel setting, in that it can
provide consistent estimates of βi or its cross-country average even if the factors are nonstationary,
if there are structural breaks in the factors, and if there is cointegration or non-cointegration between
the model variables.11

11An alternative would be to use some sort of instrument for the endogenous independent variables, either lagged values
or an external instrument. However, if these common factors are present, and each individual country responds differently
to them, then the use of any of instruments is problematic as they may be functions of the same common factors (Andrews,
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In the Pesaran (2006) Common Correlated Effects Mean Group (CMG) estimator, the individual
country production function with k inputs is then specified as

Yi t = ai + b
′
iXi t + c0iY t +

k
∑

m=1

cmiX mt + ei t . (14)

The country fixed effect ai handles the country-specific level of TFP, αi. The terms involving Y t and
X mt are capturing the influence of the unobserved factors ft , and each country is allowed to have its
unique coefficients responding to these factors.

Equation (14) is estimated country by country using OLS. At that point we have individual estimates
of βi for each country. If we were interested only in some form of average agricultural technology
we can compute the mean of these βi values across all countries.12 Alternatively, we can look at
the average value of βi across sub-groups of countries with similar climate conditions, and see if the
average value for temperate countries differs from equatorial countries, as an example. As we will
document below, there do appear to be clear differences across climate zones in the average value of
βi. It is important to note that we do not really put a lot of faith into each individual βi, since each of
these is computed from a small sample with very few degrees of freedom. Put simply, each estimate
is a noisy signal of the true parameter value, and averaging across small groups of countries boosts
this signal and reduces the noise.13 Averaging across alternative groups will enable us to indicate the
central tendencies in technology parameters we summarize below.

Our analysis in the following section compares and contrasts empirical results from a variety of dif-
ferent estimators which make different assumptions about the nature of the underlying productive
relationship.14 We consider (i) pooled estimators, assuming common technology with flexible but
common TFP evolution over time (αi = α and βi = β: POLS), or assuming TFP level differences
across countries (αi and βi = β: 2FE); (ii) a heterogeneous estimator assuming country-specific but
constant TFP growth (βi and γ ′ift = γi t: MG); (iii) a heterogeneous estimator allowing for flexible
TFP growth over time but assuming this is common to all countries (βi and γ ′ift = γft : CDMG);
and (iv) a heterogeneous estimator allowing for flexible TFP growth over time which can differ across
countries (βi and γ ′ift : CMG).

Our empirics here are not of the “treatment/effect” type. We are not testing the robustness of a specific
empirical regularity in the data (e.g. the statistical significance and sign of a specific variable) across
different models. Our approach is more in line with time series forecasting, where the goal is find a
model that best explains the variation in the data. As such, deciding which model best fits the data

2005; Coakley, et al, 2006).
12This follows the practice of the Pesaran and Smith (1995) Mean Group estimator. Although Y t and ei t are not

independent their correlation goes to zero as N becomes large.
13Eberhardt and Teal (2013b) provide a more formal exposition.
14Abbreviations for the estimators implemented: POLS – Pooled OLS (with year fixed effects), 2FE – 2-way fixed

effects (equivalent to country and year fixed effects), MG – Pesaran and Smith (1995) Mean Group (with country-specific
trends), CDMG – MG using data in deviation from cross-section means, CMG – Pesaran (2006) Common Correlated
Effects Mean Group.
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is based on formal diagnostic testing. Specifically, since nonstationarity is a concern in these data,
we investigate the regression residuals using panel unit root tests, where nonstationarity of residuals
implies that the empirical results are potentially spurious. We also carry out tests for residual cross-
section dependence: if we reject independence15 this is an indication that our identification strategy
for the technology parameters is likely flawed, as the remaining unobserved variation in TFP does not
conform to the assumption that it is i.i.d.: we are likely not to have captured all the factors, such that
the residuals are not white noise (εi t).

3.3 Empirical Results and Diagnostics

We start by providing production function estimates of the common technology in Table 1. In columns
[1]-[4] we present several alternative estimators of the agricultural production function to show how
they compare diagnostically to our preferred CMG estimator in column [5]. Columns [1] and [2]
present results from simple pooled regressions. POLS ignores the common factors and country fixed
effects, includes only year fixed effects, and assumes that all countries have the same βi = β. 2FE
also ignores the common factors, but includes both country and year fixed effects. However, it also
assumes that βi = β.

What is immediately apparent is that the estimated coefficient on labor is negative for both the POLS
and 2FE models. As noted above, we are estimating the model with all variables in per-worker terms,
while also including labor as a separate regressor. Thus the negative coefficient on labor implies that
there are decreasing returns to scale at the global level — a common finding in the literature reviewed
in Eberhardt and Teal (2013a). This does not imply that this is a reasonable description of agricultural
production. As can be seen in a lower panel of the Table, residuals remain cross-sectionally dependent
and are further likely nonstationary. In other words, there are reasons to suspect that the results (on
labor in particular) are spurious.

In column [3] we present the Pesaran and Smith (1995) Mean Group estimator. This allows for
country-specific βi. The common factor term is limited to γ ′ift = γi t, which implies that each country
has a unique growth rate for TFP, but that this growth rate is constant over time. What can be seen
in the table is that the labor coefficient here is again negative, implying decreasing returns to scale at
the global level. While the error terms are stationary in this estimation, they are still cross-sectionally
dependent, indicating that this model does not suffice to capture the agricultural production process
in our sample.

The CDMG estimate in column [4] also allows for country-specific coefficients, but assumes that
the common factor is such that γ ′ift = γft . In this case, the common factor ft is allowed to vary
arbitrarily over time, but each country is constrained to respond to this identically. In this case,
our original estimates indicated that the labor coefficient was not significantly different from zero

15More precisely we adopt the Pesaran (2015) CD test for weak dependence, with strong dependence the alternative.
Akin to heteroskedasticity the former is not a problem for estimation, merely for inference; however, since the standard
errors for our CCEMG estimates are computed non-parametrically (i.e. not from the standard errors of β̂i) this does not
cause any additional problem.
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(available upon request), which is consistent with constant returns to scale. What is reported in the
table is an estimate where we constrain the model to be constant returns to scale.

The implied values for β̂L in this case are found in the second panel. As we have individual estimates
of all coefficients for each country, there are two ways to find the average β̂L. We can get the implied
average β̂L from taking one minus the reported coefficients on other inputs reported in column [4],
giving us 0.229. Alternatively, we could find β̂Li for each country as one minus the sum of their
individual estimates of the coefficients on the other inputs, and then average those, which yields
0.157 as the common labor coefficient. These estimates are distinctly higher than what we find in
the POLS, 2FE, or MG estimates. But while the CDMG estimates have stationary residuals, there is
still cross-sectional dependence indicated in the residuals, implying that it does not capture the full
heterogeneity in the data.

This leaves us with our preferred estimates in column [5], which allow for the most flexibility. As
discussed in the prior section, we allow for heterogeneity in βi, as well as allowing each country to
have a unique reaction to the set of arbitrary common factors, γ ′ift . The CMG estimates also cannot
reject constant returns to scale at the global level, and hence we report the constrained model in the
table. Note that residuals are both stationary, and unlike the other models presented, we can reject
cross-sectional dependence. The CMG model appears to have captured the heterogeneity present in
the data. Further, note that the root mean square error of the CMG model is lower than any other
specification, indicating a better fit to the data.

Finally, the CMG results imply a much more substantial average coefficient for labor than any of the
other models, either 0.333 or 0.251 depending on how one constructs the average. Recall, though,
that these estimates of β̂L are averages across all countries in our sample, who each have an individual
β̂Li estimate. Table 1 is useful to establish that the CMG estimates have the best diagnostic properties
of available specifications, and thus as we proceed we will use the CMG estimates exclusively. But
the main purpose of the empirical analysis conducted was not to analyse average estimates across
the whole sample, but to provide some insights into the patterns of technology heterogeneity across
countries, which we turn to in the following section.

3.4 Labor Coefficients by Agro-Climatic Zone

To show the heterogeneity across agro-climatic zone in labor coefficients, we compare the mean
estimates of the labor coefficients for four different groups of countries. The groups are defined based
on their broad agro-climatic characteristics (full sample shares of land in the respective climate zone
in parenthesis, see Appendix for classification): arid (19%), temperate and cold (36%), equatorial
(37%), and highland (8%). As most countries have agricultural land covering more than one of these
types of climate zones, there is no single way to assign countries to an individual group.

We thus use different cutoff points to analyze the agro-climatic zone averages of the labor coeffi-
cient. In all cases the average labor coefficient is the outlier-robust mean following Hamilton (1992).
In Table 2 Panel A we average coefficients for those countries with any land in the specified zone,
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which inevitably leads to a significant double-counting. Despite that, one can see that the labor coef-
ficients are quite low in both arid (0.183) and temperate countries (0.116), while they are significantly
higher in equatorial (0.405) and highland (0.265) ones. In Panel B the averages are constructed from
countries where the share of agricultural land in the specified zone is higher than the overall sample
mean share. The pattern here is similar, with arid and temperate countries have lower average labor
coefficients than equatorial or highland countries.

In panels C, D, and E, we impose ad hoc cutoffs of 40%, 50%, and 60% for the share of land in a
climate zone to be classified into that group. This limits the number of countries that count as arid or
highland, but leaves the numbers of temperate and equatorial countries similar. Based on this simple
descriptive analysis we observe a pattern whereby labor coefficients are very low in the arid zone
(typically countries located in the Sahel, in Northern Africa or on the Arab Peninsula), around 0.15
in the temperate/cold (Europe, North America), around 0.5 in the equatorial (much of Sub-Saharan
Africa) and around 0.3 (Afghanistan, Ethiopia) in the highland zone.

What Table 2 establishes is that the labor elasticity of agriculture varies across agro-climatic zone.
As seen in the prior section, the labor elasticity plays a quantitative role in determining the speed at
which countries move from agriculture to non-agriculture. The question now is whether the variation
in β̂L implies an economically significant quantitative effect on development. We turn to that question
in the following section.

Prior to the quantative work, we want to note address several possible concerns with the wide variation
we find in the labor elasticity of agriculture. This may seem at odds with evidence of labor shares
in output, which are generally assumed to be around 0.60. First, aggregate labor shares in that range
are prefectly consistent with low agricultural labor shares, as the aggregate labor share is a value-
added weighted average of the labor shares across sectors. Agriculture accounts for a relatively small
fraction of value-added even in developing countries, and hence agricultural labor shares of 0.15 or
0.35 would imply aggregate labor shares of around 0.55-0.59 depending on the specific country.

Second, what limited evidence we have on agricultural labor shares is consistent with our estimates.
Fuglie (2010) documents that the labor share for the U.S. is only 0.20, while other countries in tem-
perate areas have values such as 0.19 (several former Soviet countries), 0.23 (South Africa), and 0.30
(the U.K.). These are not vastly different from our average estimated elasticity for these countries of
about 0.15. This can be compared to several developing countries in our equatorial cluster that Fuglie
documents as having distinctly higher values for labor’s share in agriculture: India (0.46), Indonesia
(0.46), and Brazil (0.43). These values are all close to the average estimated elasticity for the equato-
rial group of around 0.35. In short, there does seem to be evidence of heterogeneity in labor shares,
and it roughly matches the heterogeneity in elasticities we estimate.

Finally, the labor elasticity of agricultural output with respect to total agricultural labor - which is
relevant for development - is not necessarily identical to the elasticity of output with respect to labor
at the farm level using a specific agricultural technique. As Hayami and Ruttan (1985) discussed, what
is relevant is the “meta-production function” for agriculture, an envelope of the available techniques,
and that is what we are estimating here. Our estimates tell us the percent increase in output associated
with a percent increase in labor, allowing farmers to change agricultural techniques. For studying
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long-run growth and development, this is the more appropriate elasticity to focus on.

4. IMPLICATIONS OF TECHNOLOGY HETEROGENEITY

Theoretically, we know that agricultural technology influences the pace of development. Empirically,
we established that there was significant variation across countries in the estimated values of βL. Most
importantly, we saw that the labor elasticity (which we will refer to as βL from here on out) varies
by climate zone. The purpose of this section is to establish if the variation in βL is quantitatively
important for development.

4.1 Agricultural Technology and Structural Change

We use a calibrated version of our model to compare the equilibrium outcomes following exogenous
increases in agricultural technology across values of βL. To calibrate the model we use data from
South Korea in 1963 and 2005. We use South Korea as we wanted to ensure that our calibration
captures the experience of countries undergoing the early stages of structural change while at the same
time anchoring our analysis in the post-WWII period of an increasingly globalising world economy.
In 1963 South Korea’s workforce was 63% agricultural, but by 2005 this share had fallen to only 8%.
Over the same period agricultural output per worker went up by a factor of 7.4, non-agricultural output
per worker went up by a factor of 3.5, and total population rose by a factor of 1.8.16 It is an example
of a relatively underdeveloped country that experienced rapid structural transformation, and we feel it
provides a useful benchmark for evaluating other developing countries. We use the closed economy
version of the model, despite Korea’s known expansion of trade, as the closed economy model still
tracks the broad trends in South Korea more closely than an open economy version. In particular,
given the increase in agricultural TFP we find in South Korea, an open economy model would have
predicted a nearly complete specialization in agriculture by South Korea, which obviously is not the
case.

Setting the initial values of A, w, and L all equal to one, we find values for the utility parameters α (the
long-run preference weight on agriculture), ca (the subsistence constraint), and cn (the endowment of
non-agricultural consumption) that deliver the observed drop in the agricultural labor share from 63%
to 8% given the observed changes in labor productivity in the two sectors. The resulting values are
α= 0.01, ca = 0.802, and cn = 3.182.

Given these values, we construct three separate simulated economies, varying in their values of βL.
We use the values β ∈ (0.15,0.35, 0.55) as these capture the rough span of values found in Table 2.
The value of 0.15 is near the average for countries in temperate/cold climate zones. The values of
0.35 and 0.55 span the range of average values found for Highland and Equatorial countries.

We set the value of A = 1 and w = 1 in each economy initially as a normalization. To ensure a
meaningful comparison, we impose that each economy begins with an agricultural labor share of 80%,

16Authors’ calculations using data from Timmer and de Vries (2007).
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corresponding to an under-developed economy. To do this we adjust the initial level of population, L,
so that the equilibrium outcome of the model using our calibrated parameters is precisely La/L = 0.8.
This has the consequence that all of the interesting outcomes in the model are also identical across the
different economies. In particular, the relative price of food (pa), utility, agricultural output per worker
(Ya/La), and consumption of the two goods (ca and cn) are all identical across the three economies in
the initial set-up.

Starting from this identical initial condition, we then impose an exogenous increase of 20% to agri-
cultural TFP (A) to each economy. The results of these calculations can be found in Table 3. There,
the outcomes for each of the three simulated economies are shown, each relative to the baseline listed
in the second column. The first column of the simulations is for the economy with βL = 0.15, the
temperate climate value. With a productivity increase of 20% in agriculture, this leads to a drop in the
agricultural labor share from 0.80 to 0.37. Compare this to the values for economies with βL = 0.35
or βL = 0.55, where the labor share in agriculture falls only to 0.518 or 0.595. An additional 20%
of the labor force is able to move into non-agricultural following this productivity increase when the
labor elasticity is as low as βL = 0.15.

In all three economies, the relative price of agricultural goods declines, but note that the drop is most
pronounced when the value of βL is only 0.15. The price is only 43% of its original level, compared
to the 73% when βL = 0.55. Labor productivity in agriculture also rises for all three economies,
consistent with the drop in the relative price. The size of the increase, though, is again quite sensitive
to the value of βL. For βL = 0.15, labor productivity in agriculture is roughly 2.3 times higher than
prior to the productivity increase. The sizeable jump is due not only to the productivity improvement,
but the exit of workers from that sector, which drives up the average product of the remaining ones.
While labor productivity in agriculture rises in the economies with βL = 0.35 and βL = 0.55, the gain
is not as substantial, with only 59% and 37% increases, respectively.

The gain in labor productivity gets smaller as βL rises because βL determines the speed at which the
marginal product of labor rises when labor exits. With a high value of βL, the agricultural production
function is close to linear with respect to labor. As labor leaves that sector following the productivity
increase, the marginal product of labor does not rise very much. As the average product of labor is
proportional to the marginal product in the Cobb-Douglas setting, this means that the average product
does not rise much either. For an economy with a low βL = 0.15, there is more curvature in the
production function, and as labor exits agriculture the marginal product of the remaining labor rises
very quickly. This drives up the average product as well.

We also measure how the individual consumption baskets and an index of real income per capita
respond to the agricultural productivity improvement. Agricultural consumption rises by about 6.9%
in the economy with βL = 0.15, which is 2-3 times larger than the gains seen in the economies with
higher values of βL. While the low-βL economy has a larger gain in agricultural consumption, in no
case is the change very sizable. This occurs because of the nature of the utility function used to model
these economies. The marginal utility of ca is very high at low levels of consumption, but declines
very quickly as more ca is consumed. The majority of the new purchasing power made available from
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the productivity increase is spent on non-agricultural goods.17

Non-agricultural consumption, cn, shows the real substantial effects of the productivity increase. The
flow of workers into non-agriculture raises output in that sector, allowing for a substantial increase
in consumption of those goods. For the economy with βL = 0.15, there is a three-fold increase in
consumption of non-agricultural goods. While the gains are large (more than doubling) for the other
simulated economies, their increase in cn is not nearly as big as when βL = 0.15.

Finally, we calculate a constant-price GDP (y) for each economy both before and after the increase
in productivity, using the initial relative price to value goods. As this initial price is identical in the
three economies, the output per capita numbers are comparable across the three economies. The final
row shows the increase following the improvement in agricultural productivity. For βL = 0.15, real
income per capita rises by about 49%. This compares to only 31% for the economy with βL = 0.35
and 22% when βL = 0.55. Measured income per capita rises twice as much for the lowest-elasticity
economy compared to the others, despite the three economies sharing an identical starting point and
an identical shock to agricultural productivity. The low-elasticity economy is able to generate such
a large gain because of its ability to release labor easily from the agricultural sector, ramping up
non-agricultural production.

Note that agricultural productivity improvements always benefits an economy. Our point is simply
that the nature of agricultural technology (βL) is crucial in determining the magnitude of the benefits.
The lower is βL, the more an economy can benefit from agricultural productivity improvements. An
alternative way of seeing the influence of βL on development can be found in Figures 1 and 2. In the
first, for the three different calibrated economies we plot the labor share in agriculture over a range
of values for agricultural productivity. The economies differ only in their labor elasticity, βL, and
are again calibrated so that they have identical outcomes when A = 1. As agricultural productivity
increases the labor share declines in all three, however, the reduction is clearly faster when βL = 0.15
than in the other economies. Labor is able to leave agriculture in this low-elasticity economy with a
smaller “push” from agricultural productivity than in high-elasticity economies.

Similarly, Figure 2 shows that our measure of real income per capita increases faster with improve-
ments in agricultural productivity when βL = 0.15 than when βL is a higher value. The ability of the
low-βL economy to shed labor from the agricultural sector makes non-agricultural output more widely
available, raising living standards faster than in the alternative economies. The persistent advantage
of the low-βL economy holds even as productivity rises to 3.5 times the baseline level, equivalent to
over twenty five years of 5% per annum growth in agricultural productivity.

4.2 Population Growth and Structural Change

While economies with a large βL do not benefit as much from productivity increases, they do have
a distinct advantage over economies with a low βL. Referring back to equation (10), note that with

17This is a common feature of models of structural change, and is justified mainly by the fact that the models are
capable of matching the movements in expenditure on agricultural and non-agricultural goods quite closely.
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a high elasticity, the share of workers in agriculture is less sensitive to an increase in population, L.
From a Malthusian perspective, having a high β means that the detrimental effect of a limited supply
of land is less severe. In this sense, a high-βL economy has a distinct advantage over one with a
low βL.

To make these effects concrete, we perform another simulation using our three model economies. This
time we hold agricultural productivity constant but raise the size of the population by 5%. Table 3
shows the results of these experiments in the final three columns. For the economy with βL = 0.15, the
share of labor in agriculture rises from 80% to 94%. Compared to this, the economy with βL = 0.35
only sees an increase to 85%, and for βL = 0.55 the increase is only to 82%. The low-βL economy is
at a distinct disadvantage here, shifting a much larger fraction of its workforce back into agriculture
to meet food demand.

The effects on agricultural productivity, consumption levels, and income per capita are also more
severe when βL = 0.15 than for higher values. The low-elasticity economy experiences a drop in
labor productivity in agriculture to only 84% of its prior level, and the loss of non-agricultural workers
lowers the consumption of those goods to nearly one-fourth of the prior value. This leads to a decline
in real income per capita to about 85% of its value before the population increase.

Compared to this, the economies with higher βL values fare better. For βL = 0.55, agricultural
labor productivity stays at about 97% of the level before the population shift, and non-agricultural
consumption remains at about 88% of the earlier value. Real income per capita falls only to 97.5%
of the baseline value. The economy with βL = 0.35 is similarly better off than the low-elasticity
economy.

The reason for the advantage of the high-βL economies is the exact opposite logic of that applied
above regarding productivity increases. With a high value for βL, agricultural output is very sensitive
to the number of workers. When population increases, more workers are necessary, but it only takes
a few to increase output by enough to meet the new demand. It is now the low βL economy that lags
behind, as it must shift large amounts of labor into the agricultural sector to try and drive up output to
meet demand.

Table 3 shows that agricultural technology does not have a monotonic relationship with development.
Temperate zones with low levels of βL will be able to take advantage of agricultural productivity
improvements more aggressively, but are also more susceptible to declining living standards through
population growth. High βL zones, such as tropical and highland areas, are better able to adapt to
population growth, but will not be able to reap the benefits of productivity improvements in the same
manner as temperate areas.

4.3 Structural Change in an Open Economy

As noted above, the direction of change in La from a shock to A is different in an open economy, as
labor is shifted into the more productivity agricultural sector. Here we show simulations that use the
same structure as those pursued to this point, but where the relative international price of agricultural
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goods, p∗a is fixed. The initial conditions are the same as used previously. In particular, the labor share
in agriculture is set to be 80% in all economies.

In Table 4 we simulate the effect of a 10% increase in agricultural TFP and, separately, a 10% increase
in non-agricultural TFP. Focusing first on the agricultural TFP increase, one can see that the labor
share in agriculture after this shock is higher in the βL = 0.55 economies, at about 98%, as compared
to just under 90% for the βL = 0.15 economy. In an open economy, the response of labor shares
to shocks is increasing with the size of βL as there is no internal adjustment of the relative price of
agricultural goods. Despite the large shift of labor into agriculture, the βL = 0.55 economy is not any
better (or worse) off than the others after the shock. Given that we are holding the non-agricultural
output per worker constant in this simulation, all three economies have identical agricultural labor
productivity and identical real income per capita after the shock. Agricultural labor productivity is
unchanged as the increase due to A is offset exactly by the influx of workers in order to equalize wages
across sectors. Real income per capita is unchanged as this is pinned down by the non-agricultural
output per worker.

The second part of Table 4 shows the results of a shock to non-agricultural TFP, w. Here again,
the high-βL economies react more strongly to the shock. The agricultural labor share falls to 0.65
when βL = 0.55, but only to 0.72 when βL = 0.15. However, similar to the agricultural shock, all
three economies experience identical effects on agricultural labor productivity and real income per
capita. In each case, there is a 10% increase in both, matching the 10% increase in non-agricultural
labor productivity. The higher labor productivity in agriculture is due to the shift of labor to the non-
agricultural sector. With βL = 0.15, only a few workers need be released to non-agriculture before
the average product is raised enough to equalize wages across the sectors, which is why the shift of
labor is much smaller in this case. For the high-βL economies, more labor must leave agriculture to
raise average products there, and so they see higher shifts of labor when reaching the 10% gain in
productivity and output per capita.

Open economies reinforce the point that βL introduces significant heterogeneity into the response of
developing economies to shocks. In the open economy case, this causes larger labor shifts in the
high-βL economies, where the opposite occurs in closed economies. However, the more severe shifts
of labor in open economies are not associated with heterogeneity in agricultural labor productivity or
income per capita. Trade limits the sensitivity of living standards and labor productivity to shocks,
even as it raises the sensitivity of labor shares.

4.4 Long-run Development and Agricultural Technology

To grasp the long-run implications of differences in agricultural technology we consider a final exper-
iment with the calibrated closed-economy model. We allow for each economy to experience the same
growth in productivity and population that occurred in South Korea from 1963–2005, and compare the
outcomes. In that period, agricultural productivity (A) rose by a factor of 3.7, while non-agricultural
labor productivity (w) increased by a factor of 3.5. Population nearly doubled, rising by 80% in those
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forty-two years.18 The productivity increases are substantial, suggesting that places with relatively
low values of βL would benefit greatly. However, the large increase in population acts to offset this
somewhat, restricting the impact of the productivity changes. The value of using our calibrated model
is that we can see which effect was stronger.

Table 5 shows the results of this simple experiment. As can be seen in the first column under the
results, for an economy with βL = 0.15, the labor share in agriculture drops to less than 5% after
the South Korea-like changes. Agricultural labor productivity rises by a factor of 28, which in part
leads to an increase of 61% in agricultural good consumption. This is dwarfed by a 17-fold increase
in the consumption of non-agricultural goods, as the vast shift of labor out of agriculture allows for a
massive expansion of that sector. At constant prices, these changes lead to a 4.6-fold increase in GDP
in the economy with βL = 0.15.

Compared to this, the effects in economies with βL = 0.35 and βL = 0.55 are not as impressive,
although they are quite dramatic on their own. Consider the economy with the value of βL = 0.55.
The agricultural labor share falls, but only to about 13%, remaining more than twice as large as that
seen in the low-βL economy. Labor productivity in agriculture rises by a factor of 6.75, a major
improvement, but under a fourth as great as that seen in the low-βL situation. Constant-price GDP
also rises by a factor of under 4, indicating a massive increase in living standards. However, even
though they started out in exactly the same situation and experienced exactly the same changes to
productivity and population, the βL = 0.55 economy now has living standards that lag those in the
βL = 0.15 economy.

The increases in productivity experienced were large enough to offset the increased population growth,
and the economy with a low βL is able to reap the benefits to a greater extent. The low elasticity of
output with respect to labor means that the economy is able to shed labor from agriculture quickly,
as production is not that dependent on labor. These freed-up workers are available for the non-
agricultural sector, where they produce a massive increase in goods available.

5. DISCUSSION AND CONCLUSION

Our simulated model shows that structural change is highly sensitive to the elasticity of agricultural
output with respect to labor, βL in our terminology. The empirical work documented that this elastic-
ity does in fact vary widely across countries. In particular, the value of βL is closely correlated with
the agro-climatic zone that dominates within a country. Summarizing our results, we find that tem-
perate/cold climate zones have low labor elasticities in agriculture, on the order of 0.15. Compared to
this, equatorial and highland zones have elasticities ranging from 0.35 to 0.55.

Our results imply that there are significant effects of agricultural technology on development. How-

18Authors’ calculations using data from Timmer and de Vries (2007). The growth in agricultural productivity is the
growth in A necessary to raise agricultural output per worker by the observed factor of 7.4, given the observed change in
the number of agricultural workers. It includes not only shifts in total factor productivity, but any increases in fertilizer
use and capital use during this period.
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ever, we must be very clear on what precisely those effects are. Our findings are not an example of
“geographic determinism,” the notion that tropical or highland countries are somehow doomed to be
poor by their climate. Recall that the effect of labor elasticity (and hence climate) differs for agricul-
tural productivity and population growth. Fundamentally, it is the relative strength of these two forces
that determine a country’s living standards in our simple model. The fact that the agricultural technol-
ogy (the βL coefficient) varies by climate does not imply anything about productivity or population
levels varying by climate.

Where climate does appear to play an important role is in the speed of structural change, contingent
on productivity levels. As we showed in the model, the size of βL dictates the importance of labor for
agricultural production. In low-βL countries of the temperate zone, labor is relatively unimportant,
and hence can be released easily to non-agricultural work following a productivity improvement.
Hence temperate countries will be able to transition quickly from agriculture to industry given a
favorable productivity shock. In contrast, equatorial or tropical countries have high βL values, and
hence labor is particularly important in agricultural production. Labor is released less readily to
non-agricultural work, and so the transition from agriculture to industry will be slower for a given
productivity shock.

Our work thus offers both an optimistic and pessimistic outlook on development. The optimistic
viewpoint is that the relatively slow structural change in equatorial regions is not (only) due to some
barrier to productivity improvements and that these places may well be adopting new technologies
and techniques in agriculture at rates similar to their peers in other regions. The pessimistic aspect
is that the inherent agricultural technology will continue to cause equatorial regions to move through
the process of structural change at a slower pace than seen in temperate countries. In that sense
it would be unfair to compare the current development trajectory of Sub-Saharan African, Central
American, or South Asian countries to earlier developers in temperate regions such as Japan or South
Korea. Even given the same impetus of productivity improvements and slower population growth,
the tropical regions will take longer to release labor from agriculture to alternative uses. Short of
fundamentally altering the underlying agricultural technology – which may be biologically infeasible
– the tropical countries will be slower to reach the milestones that the success stories of the past
achieved.
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Figure 1: Agricultural Productivity and Labor Share

Notes: The figure shows the share of labor in agriculture for given levels of agricultural productivity (A) in the calibrated
model. The three lines denote the relationship in an economy using the noted value for βL , the labor elasticity of agricul-
tural production. The calibration for each economy is constructed so that the agricultural labor share is exactly equal to
0.80 when A= 1.
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Figure 2: Agricultural Productivity and Real Income per capita

Notes: The figure shows an index of real income per capita for given levels of agricultural productivity (A) in the calibrated
model. The three lines denote real income per capita relative to the baseline value of 100 for an economy using the noted
value for βL , the labor elasticity of agricultural production. The calibration for each economy is constructed so that they
have an identical real income per capita when A= 1.
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Table 1: Production Function Estimates

[1] [2] [3] [4] [5]
POLS 2FE MG CDMG CMG

Labor -0.059 -0.191 -0.357
[17.58]** [10.60]** [2.23]*

Tractors pw 0.131 0.058 0.075 0.072 0.109
β̂K [24.22]** [13.06]** [3.31]** [3.18]** [5.23]**

Livestock pw 0.219 0.358 0.246 0.327 0.321
β̂Live [28.73]** [25.34]** [8.07]** [8.28]** [9.47]**

Fertilizer pw 0.169 0.073 0.030 0.043 0.036
β̂F [28.19]** [19.87]** [4.86]** [5.70]** [5.63]**

Land pw 0.253 0.294 0.210 0.329 0.201
β̂N [30.55]** [13.05]** [2.79]** [7.10]** [3.57]**

Returns to Scale [ DRS DRS DRS CRS CRS
Implied Avg β̂L 0.169 0.027 0.082 0.229 0.333
Avg Implied β̂L n/a n/a 0.122 0.157 0.251

ε̂ Stationarity † I(0)/I(1) I(1) I(0) I(0) I(0)
ε̂ CD Test (p) ‡ -2.49 (.01) 9.64 (.00) 9.16 (.00) 3.59 (.00) -0.23 (.82)
RMSE 0.433 0.148 0.066 0.081 0.059

Notes: Results for n = 5,162 observations from N = 128 countries. Estimators: POLS – Pooled OLS (with year fixed
effects), 2FE – 2-way fixed effects, MG – Pesaran and Smith (1995) Mean Group, CDMG – MG using data in deviation
from cross-section means, CMG – Pesaran (2006) Common Correlated Effects Mean Group. We present robust sample
means for model parameters in [3]-[5]; [1] and [2] are pooled models. ∗ and ∗∗ indicate statistical significance at the 5%
and 1% level respectively. Terms in square brackets are absolute t-statistics based on standard heteroskedasticity-robust
standard errors in [1] and [2], and based on the variance estimator following Pesaran and Smith (1995) in [3]-[5]. RMSE
reports the root mean squared error.
Dependent variable: log output per worker, [2] dto. in 2FE transformation as described in Coakley et al. (2006), [4] dto.
in deviation from cross-section means.
Independent variables: all variables are in log per worker terms with the exception of ‘Labor,’ for which the coefficient
estimate indicates deviation from constant returns (formally: β̂L + β̂K + β̂Live + β̂F + β̂N − 1). This is not the technology
coefficient on labor, which is reported under ‘Implied Avg β̂L’ and ‘Avg Implied β̂L’ in a lower panel of the Table.
[ The implied returns to scale are labeled decreasing (DRS) if the coefficient on Labor is negative significant, and constant
(CRS) if this coefficient is insignificant. We present models with CRS imposed if the unrestricted model cannot reject this
specification. For heterogeneous models we present two robust mean estimates for the implied labor coefficient: the first
is computed from the averages presented in the upper panel of the Table, while the second is constructed at the country
level and then averaged.
† Pesaran (2007) CIPS test results for residual nonstationarity: I(0) — stationary, I(1) — nonstationary. Full results
available on request. ‡ Pesaran (2015) test for weak cross-section dependence (CD) in the residuals, H0: no strong CD.
All empirical analysis was conducted in Stata using the multipurt, xtcd and xtmg commands written by Markus
Eberhardt and freely available at SSC (‘findit <command>’ within Stata on a computer linked to the internet).

25



Table 2: Labor Coefficients and Climate Zones

Arid Temperate/ Equatorial Highland
Cold

Panel A: Any share of arable land in climatic zone indicated

Mean β̂L 0.183 0.116 0.405 0.265
[0.093]* [0.071] [0.082]*** [0.099]**

Sample 57 67 70 47

Panel B: Share above zone mean

Mean β̂L 0.144 0.179 0.502 0.342
[0.110] [0.075]** [0.101]*** [0.141]**

Sample 38 53 53 26

Panel C: Share above 40%

Mean β̂L 0.088 0.154 0.500 0.209
[0.124] [0.077]* [0.104]*** [0.243]

Sample 23 51 52 12

Panel D: Share above 50%

Mean β̂L 0.068 0.155 0.492 0.312
[0.143] [0.079]* [0.109]*** [0.329]

Sample 20 49 47 7

Panel E: Share above 60%

Mean β̂L 0.087 0.104 0.506 0.801
[0.136] [0.091] [0.117]*** [0.303]*

Sample 17 43 43 4

Notes: Each cell in this Table presents the robust mean of the estimated labor coefficient β̂L given the criterion indicated.
These averages are based on the CMG estimates, column [5] of table 1. All criteria refer to the share of agricultural land
in the respective climatic zones (denoted by their Köppen-Geiger letters), e.g. each robust mean computed in Panel B only
includes countries which have a share of land above the full sample mean in the specific climatic zone. Sample indicates
the number of observations from which the robust mean is constructed.
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Table 3: Effects of Exogenous Productivity and Population Changes – Closed
Economies

Equilibrium outcomes from:

20% Increase 5% Increase
in Ag. TFP (A) in Population (L)

with β = with β =

Outcome Baseline 0.15 0.35 0.55 0.15 0.35 0.55

Ag. labor share (La/L) 0.8 0.369 0.518 0.595 0.944 0.852 0.823

Ag. relative price (pa) 1.0 0.432 0.629 0.729 1.189 1.068 1.031

Ag. labor productivity (Ya/La) 1.0 2.314 1.591 1.371 0.841 0.936 0.970

Ag. consumption p.c. (ca) 1.0 1.069 1.030 1.019 0.992 0.997 0.998

Non-ag. consumption p.c. (cn) 1.0 3.153 2.408 2.026 0.281 0.740 0.882

Real income p.c. (y) 1.0 1.485 1.306 1.221 0.849 0.945 0.975

Notes: The table shows the equilibrium outcomes for each of the listed measures. The “Baseline” is the starting equilib-
rium for each of the six simulations. The results of (1) increasing agricultural TFP by 20% and (2) increasing population
size by 5% are shown for three sample economies. These sample economies vary only in the size of their β , the elas-
ticity of agricultural output with respect to labor. The initial level of agricultural TFP is equal to one in each simulation.
The initial size of the population, L, is set so that the baseline values are identical (L equals 1.18, 1.16, or 1.13 for
β = 0.15,0.35, 0.55 respectively). Real income per capita is calculated using the initial relative price of agricultural
goods, which is identical for all three economies. The parameter values used in the calculations are as follows: α= 0.01,
ca = 0.802, cn = 3.182, w= 1.0.
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Table 4: Effects of Exogenous Productivity and Population Changes – Open
Economies

Equilibrium outcomes from:

10% Increase 10% Increase
in Ag. TFP (A) in Non-ag. TFP (w)

with β = with β =

Outcome Baseline 0.15 0.35 0.55 0.15 0.35 0.55

Ag. labor share (La/L) 0.8 0.895 0.926 0.989 0.715 0.691 0.647

Ag. labor productivity (Ya/La) 1.0 1.000 1.000 1.000 1.100 1.100 1.100

Real income p.c. (y) 1.0 1.000 1.000 1.000 1.100 1.100 1.100

Notes: The table shows the equilibrium outcomes for each of the listed measures using the model with free trade of
both agricultural and non-agricultural goods. The “Baseline” is the starting equilibrium for each of the six simulations.
The results of (1) increasing agricultural TFP by 10% and (2) increasing non-agricultural TFP by 10% are shown for
three sample economies. These sample economies vary only in the size of their β , the elasticity of agricultural output
with respect to labor. The initial level of agricultural TFP and non-agricultural TFP is equal to one in each simulation.
The relative world price of agricultural goods is set to p∗a = 0.5. The initial size of the population, L, is set so that the
baseline values are identical (L equals 0.55, 0.43, 0.27 for β = 0.15,0.35, 0.55 respectively). Real income per capita is
calculated using world price of agricultural goods. The parameter values used in the calculations are as follows: α= 0.01,
ca = 0.802, cn = 3.182.
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Table 5: Long-run Development Outcomes

Equilibrium after:

270% increase in A
250% increase in w
80% increaes in L

with β =

Outcome Baseline 0.15 0.35 0.55

Ag. labor share (La/L) 0.800 0.046 0.083 0.131

Ag. relative price (pa) 100.0 12.5 29.4 51.9

Ag. labor productivity (Ya/La) 100.0 2804.9 1191.0 675.0

Ag. consumption p.c. (ca) 100.0 161.7 123.2 110.9

Non-ag. consumption p.c. (cn) 100.0 1669.3 1605.2 1520.0

Real income p.c. (y) 100.0 463.2 419.6 392.7

Notes: The table shows the equilibrium outcomes for each of the listed measures. The “Baseline” is the starting equi-
librium for each of the three simulations. For each simulation, agricultural productivity, non-agricultural productivity,
and population exogenously grow by an amount equivalent to that experienced by South Korea in the period 1963-2005.
The simulation economies vary only in the size of their β , the elasticity of agricultural output with respect to labor. The
initial level of agricultural TFP is equal to one in each simulation. The initial size of the population, L, is set so that the
baseline values are identical (L equals 1.51, 1.22, or 1.07 for β = 0.15,0.35, 0.55 respectively). Real income per capita
is calculated using the final period relative price of agricultural goods. The parameter values used in the calculations are
as follows: α= 0.01, ca = 0.802, cn = 3.182, w= 1.0.
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APPENDIX

A-1. DATA CONSTRUCTION

The principal data source for our empirical analysis is the Food and Agriculture Organisation’s FAO-
STAT database (Fao, 2007), from which we obtain annual observations for agricultural net output,
economically active labour force in agriculture, number of tractors used in agriculture, arable and
permanent crop land and fertilizer use in 128 countries from 1961 to 2002. The total number of ob-
servations is 5,162 with an average country series of 40.3. Real agricultural net output (in thousand
International $) is based on all crops and livestock products originating in each country. Intermediate
primary inputs of agricultural origin are deducted, including fodder and seed. The quantities for each
commodity are weighted by the respective 1999-2001 average international commodity prices and
then summed for each year by country. The prices are in international dollars, derived using a Geary-
Khamis formula for the agricultural sector.19 The labour variable represents the annual time series
for total economically active population in agriculture. For capital stock in agriculture we follow a
common convention and use total number of agricultural tractors in use as a proxy. The livestock
variable is constructed from the data for individual groups of animals. Following convention we use a
conversion detailed in Hayami and Ruttan (1970) to convert the numbers for these individual species
into the livestock variable. The fertilizer variable represents agricultural fertilizer consumed in metric
tons, which includes ‘crude’ and ‘manufactured’ fertilizers. The land variable represents arable and
permanent crop land (in 1000 hectare). Descriptive statistics are presented in Table A-I.

Additional time-invariant data on the share of agricultural land by climatic zone from Matthews
(1983), available in Gallup et al. (1999) – see Table A-II for details.

19Refer to the Technical Appendix to Restuccia et al. (2008), available on Restuccia’s website.
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A-2. DESCRIPTIVE STATISTICS

Table A-I: Descriptive statistics

Variables in untransformed level terms
Variable mean median std. dev. min. max.
logs
output 14.24 14.24 1.71 8.07 19.57
labor 14.01 14.09 1.84 8.01 20.05
tractors 9.01 8.87 2.79 0.69 15.51
livestock 14.90 14.92 1.71 8.80 19.51
fertilizer 10.82 10.97 2.69 1.61 17.49
land 14.69 14.78 1.80 6.91 19.07
annual growth rate
output 2.3% 2.4% 8.8% -83.0% 87.6%
labor 0.3% 0.8% 2.6% -28.8% 28.8%
tractors 4.4% 2.0% 9.9% -121.8% 138.6%
livestock 1.4% 1.6% 6.4% -93.3% 182.9%
fertilizer 5.6% 3.5% 40.1% -626.3% 393.2%
land 0.8% 0.1% 3.6% -41.8% 79.0%

Variables in per worker terms
Variable mean median std. dev. min. max.
logs
output 0.23 -0.03 1.42 -2.22 4.00
tractors -5.00 -4.97 3.01 -13.67 0.68
livestock 0.89 0.81 1.38 -2.77 4.63
fertilizer -3.19 -2.87 2.67 -11.56 1.95
land 0.68 0.67 1.15 -2.20 4.95
annual growth rate
output 2.0% 2.0% 9.0% -80.3% 109.9%
tractors 4.1% 2.1% 10.1% -120.2% 136.5%
livestock 1.2% 1.2% 6.6% -93.5% 182.9%
fertilizer 5.4% 4.2% 40.0% -627.8% 390.8%
land 0.5% 0.0% 4.1% -43.0% 81.6%

Notes: We report the descriptive statistics for output (in I$1,000), labor (headcount), tractors (number), livestock (cattle-
equivalent numbers), fertilizer (in metric tonnes) and land (in hectare) for the full sample (n= 5,162; N = 128).
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A-3. CLIMATE ZONES

Table A-II: Climate Zones following Köppen-Geiger

A Equatorial climates Af Equatorial rainforest, fully humid
Am Equatorial monsoon
As Equatorial savannah with dry summer
Aw Equatorial savannah with dry winter

B Arid climates Bs Steppe climate
Bw Desert climate

C Warm temperate climates Cf Warm temperate climate, fully humid
Cs Warm temperate climate with dry summer
Cw Warm temperate climate with dry winter

D Snow climates Df Snow climate, fully humid
Ds Snow climate with dry summer
Dw Snow climate with dry winter

E Polar climates Ef Frost climate
Et Tundra climate

H Highland climate above 2,500m elevation

Notes: This classification is taken from Kottek et al (2006). The Highland category was added after the creation of
the Köppen-Geiger classification, with an elevation cut-off of 2,500m suggested in a number of online databases. The
Matthews (1983) data has a marginally different classification where As and Ds are not classified and the two polar
climates are combined to a single H category — this results in 12 rather than 15 categories.
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A-4. PROOF OF PROPOSITION 1

To begin the proof, first define the following elasticities:

ε
ca
A =

∂ ca

∂ A
A
ca

(15)

ε
Ya
A =

∂ Ya/La

∂ A
A

Ya/La
(16)

ε
La
A =

∂ La

∂ A
A
La

(17)

ε
pa
A =

∂ pa

∂ A
A
pa

. (18)

Market clearing requires that ca L = Ya, which can be re-written using the production function Ya =
ALβL

a as

La =

�

ca L1−βL

A

�βL

. (19)

Taking the derivative of La with respect to A, and allowing for the fact that ca is a function of A as
well, with some manipulation we have

ε
La
A =

1
βL

�

ε
ca
A − 1

�

. (20)

Holding that result for a moment, consider that expenditure on agricultural goods must satisfy

paca = α(w− paca + cn) + pacn. (21)

Rearranging this and using the labor-market clearing condition that w = paYa/La as well as the
production function for Ya yields

ca = α
�

1+
cn

w

�

ALβL−1
a + (1−α)ca. (22)

Taking the derivative of ca with respect to A, accounting for the fact that La is a function of A yields
after some manipulation

ε
ca
A = Ω

�

1+ (βL − 1)εLa
A

�

(23)

where

Ω=
α
�

1+ cn
w

�

La/L
. (24)

Solving (23) with (20) yields the following expression for the elasticity of agricultural labor with
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respect to agricultural productivity

ε
La
A =

Ω− 1
βL(1−Ω) +Ω

. (25)

This is clearly decreasing in βL, as claimed in the proposition. Using this result in (23) yields
that

ε
ca
A =

Ω

βL(1−Ω) +Ω
, (26)

and this is also decreasing in βL, matching the second claim of the proposition. From market clearing
we have that Ya/La = (ca L)/La, which indicates that εYa

A = ε
ca
A −ε

La
A . That makes it straightforward to

see that
ε

Ya
A =

1
βL(1−Ω) +Ω

. (27)

This is declining in βL, as claimed in the proposition. Finally, the labor market clearing condition
w= paYa/La shows that εpa

A = −ε
Ya
A , as w is held constant. Thus the absolute value of εpa

A is decreasing
in βL, as claimed, given that εYa

A is declining in βL.
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