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In the early literature on developing countries a distinction was made between the processes of
economic development and of economic growth. Economic development was seen to be a process
of structural transformation by which in Arthur Lewis’ frequently cited phrase an economy which
was “previously saving and investing 4 or 5 percent of its national income or less, converts itself
into an economy where voluntary savings is running at about 12 to 15 percent of national income”
(Lewis, 1954, p.155). An acceleration in the investment rate was only one part of this process of
structural transformation; of equal importance was the process by which an economy moved from
a dependence on subsistence agriculture to one where an industrial modern sector absorbed an
increasing proportion of the labour force (e.g. Jorgensen, 1961; Ranis & Fei, 1961; Robinson, 1971).
In contrast to these models of “development for backward economies” (Jorgensen, 1961, p.309),
where duality between the modern and traditional sectors was a key feature of the model, was the
analysis of economic growth in developed economies.1 Here the processes of factor accumulation
and technical progress occur in an economy which is already ‘developed’, in the sense that it has a
modern industrial sector and agriculture has ceased to be a major part of the economy (e.g. Solow,
1956; Swan, 1956).

The literature begun in the early 1990s has yielded a large array of models in which there has
been increasing interaction between the theory and the empirics (Durlauf & Quah, 1999; Easterly,
2002; Durlauf, Johnson, & Temple, 2005). The latter continue to be dominated by an empirical
version of the aggregate Solow-Swan model (Temple, 2005) with much of the empirical debate
focusing on the roles of factor accumulation versus technical progress (Young, 1995; Klenow &
Rodriguez-Clare, 1997a, 1997b; Easterly & Levine, 2001; Baier, Dwyer, & Tamura, 2006). While there
is some new theoretical and empirical work using a dual economy model (e.g. Vollrath, 2009a,
2009b; Lin, 2011; McMillan & Rodrik, 2011; Page, 2012), this is largely absent from textbooks on
economic growth and has not been the central focus of attention for most of the empirical analyses
(Temple, 2005). A primary reason for the focus has been the availability of data. The Penn World
Table (PWT) dataset (most recently, Heston, Summers, & Aten, 2011) and the Barro-Lee data on
human capital (most recently, Barro & Lee, 2010) have supplied macro-data which ensure that
the aggregate human capital-augmented Solow-Swan model can be readily estimated. However,
somewhat underappreciated by the applied empirical literature, a team at the World Bank has
developed comparable sectoral data for agriculture and manufacturing (Crego, Larson, Butzer, &
Mundlak, 1998) that enables a closer matching between a dual economy framework and the data,
which we seek to exploit in this paper.

We estimate production functions for both manufacturing and agriculture and use the result to
create a ‘stylised’ aggregate production function. We compare the results from this exercise with
the standard approach in the literature, which is to use the PWT data to estimate aggregate functions
ignoring both aggregation and heterogeneity issues at the sectoral level. Our findings indicate that
technological differences across countries and within sectors are both important and that aggregate
specifications are likely to lead to very misleading inferences regarding TFP.

The remainder of the paper is organised as follows: Section I motivates technology heterogene-
ity across sectors and countries. In Section II we introduce an empirical specification of our dual

1We refer to ‘dual economy models’ as representing economies with two stylised sectors of production (agriculture
and manufacturing). ‘Technology’ and ‘technology parameters’ refer to the coefficients on capital and labour in the
production function model (elasticities with respect to capital and labour), not Total Factor Productivity (TFP) or its
growth rate (technical/technological progress).
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economy framework, discuss the data and briefly review the empirical methods and estimators em-
ployed. Section III reports and discusses empirical findings at the sector-level. Section IV presents
empirical findings from stylised and PWT aggregate data as well as evidence for technology hetero-
geneity. Section V summarizes and concludes.

I. Technology Heterogeneity

Technology Heterogeneity across Sectors

From a technical point of view, an aggregate production function only offers an appropriate con-
struct in cross-country analysis if the economies investigated do not display large differences in sec-
toral structure (Temple, 2005), since a single production function framework assumes common pro-
duction technology across all ‘firms’ facing the same factor prices. Take two distinct sectors within
this economy, assuming marginal labour product equalisation and capital homogeneity across sec-
tors, and Cobb-Douglas-type production technology. Then if technology parameters differ between
sectors, aggregated production technology cannot be of the (standard) Cobb-Douglas form (Stoker,
1993; Temple & Wößmann, 2006). Finding differential technology parameters in sectoral produc-
tion function estimation thus is potentially a serious challenge to treating production in form of an
aggregated function.

An alternative motivation for a focus on sector-level rather than aggregate growth across countries
runs as follows: it is common practice to exclude oil-producing countries from any aggregate growth
analysis, since “the bulk of recorded GDP for these countries represents the extraction of existing
resources, not value added” (Mankiw, Romer, & Weil, 1992, p.413). The underlying argument is that
sectoral ‘distortions’, such as resource wealth, justify the exclusion of the country observations. By
extension of the same argument, we could suggest that given the large share of agriculture in GDP
for countries such as Malawi (25-50%), India (25-46%) or Malaysia (8-30%) over the period 1970-2000,
these countries should be excluded from any aggregate growth analysis since a significant share of
their aggregate GDP derives from a single resource, namely land.2 Sector-level analysis mitigates
this problem as manufacturing or agriculture are clearly more homogeneous than any aggregate
construct, although our analysis shows that heterogeneity within these sectors is an important aspect
of the data.

Technology Heterogeneity across Countries

A theoretical justification for heterogeneous technology parameters across countries can be found
in the ‘new growth’ literature. This strand of the theoretical growth literature argues that pro-
duction functions differ across countries and seeks to determine the sources of this heterogeneity
(Durlauf, Kourtellos, & Minkin, 2001). As Brock and Durlauf (2001, p.8/9) put it: “. . . the assump-
tion of parameter homogeneity seems particularly inappropriate when one is studying complex

2The quoted shares are from the World Development Indicators database (World Bank, 2008). For comparison, maxi-
mum share of oil revenue in GDP, computed as the difference between ‘industry share in GDP’ and ‘manufacturing share
in GDP’ from the same database yields the following ranges for some of the countries dropped in Mankiw et al. (1992):
Iran (12-51%), Kuwait (15-81%), Gabon (28-60%), Saudi Arabia (29-67%).
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heterogeneous objects such as countries”. The model by Azariadis and Drazen (1990) can be seen
as the ‘grandfather’ for many of the theoretical attempts to allow for countries to possess different
technologies from each other (and/or at different points in time). Other theoretical papers lead to
multiple equilibria interpretable as factor parameter heterogeneity in the production function (e.g.
Murphy, Shleifer, & Vishny, 1989; Durlauf, 1993; Banerjee & Newman, 1993). Further challenge to
the assumption of common technology is provided by the ‘appropriate technology’ literature, which
argues that different technologies are appropriate to different factor endowments (see Basu & Weil,
1998). Under this explanation, global R&D leaders develop productivity-enhancing technologies
that are suitable for their own capital-labour ratios and cannot be used effectively by poorer coun-
tries, so the latter do not develop. Empirical evidence which lends some support to this hypothesis
can be found, among others, in Clark (2007) and Jerzmanowski (2007). A simpler justification for
heterogeneous production functions is offered by Durlauf et al. (2001, p.929): the Solow model was
never intended to be valid in a homogeneous specification for all countries, but may still be a good
way to investigate each country, i.e. if we allow for parameter differences across countries.

Further, more formal insights for empirical modelling can be gained from the micro production
framework introduced in Mundlak (1988) and taken to the macro (agriculture) data in Mundlak,
Larson, and Butzer (1999) and Mundlak, Butzer, and Larson (forthcoming). Here the technology
of production available to individual firms is a collection of possible techniques, each with its own
production function, with optimal output over implemented techniques defined as

Y∗ ≡ F(X∗, s) = ϕ(s) (1)

where X∗ and Y∗ represent (optimal) inputs and output aggregated over implemented techniques
and s is a vector of state variables determining both optimal input choice X∗ and implemented tech-
nique F(·).3 In each period4 firms thus face the economic problem of choosing inputs as well as the
appropriate production technique. This joint determination of inputs and technique makes it diffi-
cult to identify parameter coefficients in an empirical equivalent of equation (1) unless additional
structure is imposed on the problem. Adopting a number of simplifying assumptions Mundlak
et al. (forthcoming) provide the following approximation for their empirical model of output and
inputs (i.e. production/supply and factor demand functions), explicitly including the exogenous
state variables s

yit = xitβ(s) + sitγ + m0it + u0it (2)

xjit = sitγ + m0it + ε jit (3)

where subscript j refers to the specific observed input to production x and y is observed output.5

m0it represents a firm-specific productivity shock at time t which is observed by the firm, thus
influencing its input choice, but unknown to the econometrician. A large microeconometric liter-
ature (for a recent survey see Eberhardt & Helmers, 2010) has attempted to address the resulting
‘transmission bias’ first highlighted by Marschak and Andrews (1944). Mundlak et al. (forthcoming)
simplify this productivity shock by requiring that it be decomposable into firm- and time-specific
effects, m0it = m0i + m0t (similarly for the input equations). The setup further highlights two ‘tech-

3Crucially, all changes in X∗ are instigated by the state variables and with the exception of error it is deemed ‘mean-
ingless’ to think of any other factors driving inputs (Mundlak et al., 1999).

4For simplicity the exposition in Mundlak et al. (forthcoming) is limited to a static model.
5u0it and ε jit are white noise.
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nology shifters’: firstly, the state variables affect output directly and indirectly through the selection
of inputs, thus acting as input/output shifters; secondly, the state variables further directly influence
the technology parameters β. Here, the state variables act as technology shifters in the sense that
conditional on s (i) different countries will have different β coefficients, and/or (ii) at different points
in time the same country may have different β coefficients. The presence of the state variables in
the equations for y and x prevents the straightforward application of instrumental variables.6

Following some simplifying assumptions regarding aggregation (see Mundlak, 1988) the above
framework is extended to apply at the country level. Empirical testing in the case of the cross-
country production function for agriculture is carried out with a set of state variables including
proxies for human capital, level of development, institutions, peak agricultural yield and a num-
ber of indicators for prices and price variability.7 Using the simplifying assumption that β(s) = β,
where they refer to the latter as a ‘sample-dependent constant’, the model is estimated using OLS
following a within-country-time transformation of the variables, i.e. applying the two-way fixed ef-
fects estimator — the authors refer to the results from this regression as ‘core technology’.8 Further
analysis in the paper and a related study by one of the co-authors (Butzer, 2011) investigate pa-
rameter constancy over time and parameter heterogeneity across countries by splitting the data into
two periods and two country groups, respectively. Our own empirical implementation builds on
the model by Mundlak et al. (forthcoming) as will become clear in the following discussion.

II. An Empirical Model of A Dual Economy

In the following we first present a general empirical specification for our sector-specific analysis of
agriculture and manufacturing which shows how recent developments in the econometric modelling
of production functions link with the framework set out by Mundlak. Next we review a number of
empirical estimators, focusing on those arising from the recent panel time series literature, before
we briefly discuss the data.

Empirical Specification

Our empirical framework adopts a ‘common factor’ representation for a standard log-linearised
Cobb-Douglas production function model. Each sector/level of aggregation (agriculture, manufac-
turing, aggregate(d) data) is modelled separately — for ease of notation we do not identify this
multiplicity in our general model. Let

yit = β′i xit + uit uit = αi + λ
′
i ft + ε it (4)

xmit = πmi + δ
′
mi gmt + φ1mi f1mt + . . . + φnmi fnmt + vmit (5)

ft = ρ′ft−1 +ωt and gt = κ′gt−1 + εt (6)

for i = 1, . . . , N countries, t = 1, . . . , T time periods and m = 1, . . . , k inputs.9 Equation (4) represents
the production function, with y as sectoral or aggregated value-added and x as a set of inputs: labour,

6Mundlak et al. (forthcoming) refer to the presence of state variables in both equations as technology ‘heterogeneity’.
Note that our use of the term differs in that we refer to βi 6= β as technology heterogeneity.

7The between country regressions further include time-invariant proxies for countries’ physical environment.
8Between-time and between-country estimates are also provided but the 2FE results are the focus of attention.
9Further, f ·mt ⊂ ft and the error terms εit, vmit, ωt and εt are white noise.
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physical capital stock, and a measure for natural capital stock (arable and permanent crop land) in
the agriculture specification (all variables are in logs). We consider additional inputs (human capital,
livestock, fertilizer) as robustness checks for our general findings (see Supplemental Appendix S4).
The output elasticities associated with each input (βi) are allowed to differ across countries.10

For unobserved TFP we employ the combination of a country-specific TFP level (αi) and a set of
common factors (ft) with country-specific factor loadings λi — TFP is thus in the spirit of a ‘measure
of our ignorance’ (Abramowitz, 1956), driven by some ‘latent’ processes that are either difficult to
measure or truly unobservable. Equation (6) provides some structure for these unobserved common
processes, which are modelled as simple AR(1) processes, where we do not exclude the possibility
of unit root processes (ρ = 1, κ = 1), leading to nonstationary observables and unobservables.
Note that from this the potential for spurious regression results arises if the empirical equation is
misspecified.

Equation (5) details the evolution of the set of inputs, the input demand functions; crucially, some of
the same processes determining the evolution of inputs are also assumed to be driving TFP in the
production function equation.11 Economically, this implies that the processes that make up TFP (e.g.
knowledge, innovation, absorptive capacity) are affecting choices over inputs, i.e. the accumulation
of capital stock, the evolution of the labour force and (in the agriculture equation) the area of land
under cultivation, while at the same time affecting the production of output directly. Simply put,
technical progress affects both production and the choice of productive inputs. Econometrically, this
setup leads to endogeneity whereby the regressors are correlated with the unobservables, making
it difficult to identify βi separately from λi and φi (Kapetanios, Pesaran, & Yamagata, 2011). A
conceptual justification for the pervasive character of unobserved common factors is provided by
the nature of macro-economic variables in a globalised world, where economies are strongly con-
nected to each other and latent forces drive all of the outcomes. The presence of such latent factors
makes it difficult to argue for the validity of traditional approaches to causal interpretation of cross-
country empirical analyses. Instrumental variable estimation in cross-section growth regressions or
Arellano and Bond (1991)-type lag-instrumentation in pooled panel models are both invalid in the
face of common factors and/or heterogeneous equilibrium relationships (Pesaran & Smith, 1995;
Lee, Pesaran, & Smith, 1997).

This model can be viewed as an empirical version of the theoretical model of Mundlak et al. (forth-
coming) developed above: equations (4) and (5) capture the jointness property, which in the for-
mer’s empirical model is made explicit by inclusion of a set of ‘state variables’ that impact inputs
and output in an identical fashion — γ in equations (2) and (3). Instead, our framework allows for
underlying unobserved factors to affect inputs and output differentially via the factor loadings.12

These factors are conceptually similar to the state variables in the Mundlak model in that they
represent any variable which may affect both factor choice and underlying TFP. The empirical im-
plementation of our model differs from that of Mundlak in that we allow the data to seek to identify
the different choices for the β coefficients. The evolution of the factors is fairly general, including
nonstationarity, and the setup provides for globally common effects (strong factors) as well as local
spillovers (weak factors). Similarly to Mundlak et al. (forthcoming) the productivity shock term m0it

10Heterogeneity over time will be addressed in Section IV.
11Others, namely gt, are specific to the input evolution.
12A detailed review of the important contribution of factor models to empirical macroeconometrics is beyond the scope

of this study — see Stock and Watson (2002), Bai and Ng (2008) and Onatski (2009) for more details.
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is accounted for by a fixed effect αi (m0i) and the common factor structure (m0t = λ ft).13 Finally,
we allow for technology heterogeneity βi across countries and test parameter constancy over time
(βit = βi). The latter will further provide insights into the ‘core technology’ by highlighting whether
technology parameters are likely to be functions of unobservables (in our case ft, in the Mundlak et
al. (forthcoming) notation s). Our empirical implementation is focused on recent panel time series
estimators which address nonstationarity, parameter heterogeneity and cross-section dependence.
The following section introduces these methods in some more detail.

Empirical Implementation

Our empirical setup incorporates a large degree of flexibility with regard to the impact of observ-
able and unobservable inputs on output. Empirical implementation will necessarily lead to different
degrees of restrictions on this flexibility, which will then be formally tested: the emphasis is on com-
parison of different empirical estimators allowing for or restricting the heterogeneity in observables
and unobservables outlined above. The following 2× 2 matrix indicates the assumptions implicit
in the various estimators implemented below.14 We confine results for the estimators marked with
stars to the Supplemental Appendix to save space.15

Impact of Unobservables:

common idiosyncratic

Production Technology: common POLS, 2FE, CCEP,
GMM?, PMG? CPMG?

idiosyncratic MG, FDMG CMG

The panel time series econometric approach is given particular attention in this study for a number
of reasons (for a detailed discussion see Eberhardt & Teal, 2011a). Firstly, we know that many
macro variables are potentially nonstationary (Nelson & Plosser, 1982; Granger, 1997; Pedroni,
2007), which is confirmed for the variables in our data (see Supplemental Appendix, S1). When
variables are nonstationary, standard regression output has to be treated with extreme caution,
since results are potentially spurious. Provided variables are cointegrated we can nevertheless
establish long-run equilibrium relationships in the data. The practical indication of cointegration is
when regressions yield stationary residuals, whereas nonstationary residuals indicate a potentially
spurious regression. Panel time series estimators can address the concern over spurious regression
and we investigate the residuals of each empirical model using panel unit root tests. Secondly, panel
time series methods allow for parameter heterogeneity across countries, which as motivated above
is the central interest in our analysis. Thirdly, panel time series methods can address the problems

13The shock can never be truly idiosyncratic, i.e. m0it, differing for each country i at each point in time t. We feel this
is a reasonable assumption given the interconnectedness of economies.

14Abbreviations: POLS — Pooled OLS, 2FE — 2-way Fixed Effects, GMM — Arellano and Bond (1991) Difference
GMM and Blundell and Bond (1998) System GMM, MG — Pesaran and Smith (1995) Mean Group (with linear country
trends), FDMG — dto. with variables in first difference and country drifts, PMG — Pesaran, Shin, and Smith (1999)
Pooled Mean Group estimator, CPMG — dto. augmented with cross-section averages following Binder and Offermanns
(2007), CCEP/CMG — Pesaran (2006) Common Correlated Effects estimators. Note that our POLS model is augmented
with T − 1 year dummies.

15GMM, PMG and CPMG estimation were based on an error correction model specification, see Pesaran et al. (1999)
for details. Further discussion of the empirical setup and results are available on request.
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arising from cross-section correlation. Whether this is the result of common economic shocks or
local spillover effects, cross-section correlation can potentially induce serious bias in the estimates,
since the impact assigned to an observed covariate in reality confounds its impact with that of the
unobservable processes. Although the panel time series approach does not allow us to quantify
their impact, common shocks and local spillovers can be accommodated in the empirical analysis to
obtain unbiased technology coefficients for the observable inputs. We will employ diagnostic tests
to analyse each model’s residuals for the presence/absence of cross-section dependence.

In the following we introduce the Common Correlated Effects (CCE) estimators developed in
Pesaran (2006) and extended to nonstationary variables in Kapetanios et al. (2011) since there are at
present relatively few applied studies which employ them (examples include Holly, Pesaran, & Ya-
magata, 2010; Moscone & Tosetti, 2010; Cavalcanti, Mohaddes, & Raissi, 2011; Eberhardt, Helmers,
& Strauss, forthcoming).16

The CCE estimators augment the regression equation with cross-section averages of the dependent
(ȳt) and independent variables (x̄t) to account for the presence of unobserved common factors with
heterogeneous impact. For the Mean Group version (CMG), the individual country regression is
specified as

yit = ai + b
′
ixit + c0iȳt +

k

∑
m=1

cmi x̄mt + eit (7)

whereupon the parameter estimates b̂i are averaged across countries akin to the Pesaran and Smith
(1995) Mean Group estimator.17 The pooled version (CCEP) is specified as

yit = ai + b
′xit +

N

∑
j=1

c0i(ȳtDj) +
k

∑
m=1

N

∑
j=1
cmi(x̄mtDj) + eit (8)

where the Dj represent country dummies.18 The former is thus a simple extension to the Pesaran
and Smith (1995) MG estimator based on on country-specific OLS regressions, whereas the latter is
a standard fixed effects estimator augmented with additional regression terms.

In order to get an insight into the workings of this approach, consider the cross-section average of
our model in equation (4): as the cross-section dimension N increases, given ε̄t = 0, we get

ȳt = ᾱ + β̄′x̄t + λ̄
′ft ⇔ ft = λ̄−1(ȳt − ᾱ− β̄′x̄t) (9)

This simple derivation provides a powerful insight: working with cross-sectional means of y and x
can account for the impact of unobserved common factors (TFP) in the production process.19 Given
the assumed heterogeneity in the impact of unobserved factors across countries (λi) the estimator
is implemented in the fashion detailed above, which allows for each country i to have different

16We abstract from discussing the standard panel estimators here in great detail and refer to the articles by Coakley,
Fuertes, and Smith (2006), Bond and Eberhardt (2009) and Bond (2002) for more information. We also investigate the
Pooled Mean Group (PMG) estimator by Pesaran et al. (1999) as well as a simple extension to the PMG where we include
cross-section averages of the dependent and independent variables (CPMG), as suggested in Binder and Offermanns
(2007).

17Although ȳt and eit are not independent their correlation goes to zero as N becomes large.
18Thus in the MG version we have N individual country regressions with 2k + 2 RHS variables and in the pooled

version a single regression equation with k + (k + 2)N RHS variables.
19Most conservatively the CCE estimators require λ̄ 6= 0, i.e. that the impact of each factor is on average non-zero

(Coakley et al., 2006). Alternative scenarios (see Pesaran, 2006; Kapetanios et al., 2011) allow for this assumption to be
dropped in certain situations but for the sake of generality we maintain it here.
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parameter estimates on ȳt and the x̄t, and thus implicitly on ft. Simulation studies (Pesaran, 2006;
Coakley et al., 2006; Kapetanios et al., 2011; Pesaran & Tosetti, 2011) have shown that this approach
performs well even when the cross-section dimension N is small, when variables are nonstation-
ary, cointegrated or not, subject to structural breaks and/or in the presence of local spillovers and
global/local business cycles.20 In the present study we implement two versions of the CCE esti-
mators in the sector-level regressions: a standard form as described above; and a variant which
includes the cross-section averages of the input and output variables in the own as well as the other
sector. The latter specification allows for cross-section dependence across sectors, albeit at the cost
of a reduction in degrees of freedom. It is conceivable that the evolution of the agricultural sector of
developing countries influences that of the wider economy in general and the manufacturing sector
in particular, such that this extension is sensible in the dual economy context.

This completes our discussion of the empirical implementation within each sector/level of aggrega-
tion. There is a direct link from the problems these estimators seek to address and the issue raised
in the previous section regarding the problems posed in identifying the technology parameters of
interest. Heterogeneity in the impact of observables and unobservables across countries can be di-
rectly interpreted as differences in the production technology and differential TFP evolution across
countries. The above discussion suggests that from an economic theory standpoint there are rea-
sons to prefer a more flexible approach, however we do not impose this on the data. Instead we use
established econometric diagnostics (tests for residual stationarity and cross-section independence)
to identify the models that are rejected and those that are supported by the data.

Data

Descriptive statistics and a more detailed discussion of the data can be found in the Appendix. We
conduct all empirical analysis with four datasets:

(i) for the agricultural sector, building on the sectoral investment series developed by Crego et al.
(1998) and output from the World Development Indicators (WDI; World Bank, 2008), as well
as sectoral labour and land data from FAO (2007);

(ii) for the manufacturing sector, building on the sectoral investment series developed by Crego
et al. (1998), output data from the WDI and labour data from UNIDO (2004);

(iii) for a stylised aggregate economy made up of the aggregated data for the agriculture and
manufacturing sectors;21

(iv) for the aggregate economy, building on data provided by the Penn World Table (PWT; we use
version 6.2, Heston, Summers, & Aten, 2006).

The capital stocks in the agriculture, manufacturing and PWT samples are constructed from invest-
ment series following the perpetual inventory method (see Klenow & Rodriguez-Clare, 1997b, for
details), for the aggregated sample we simple added up the sectoral capital stocks. Comparison
across sectors and with the stylised aggregate sector is possible due to the efforts by Crego et al.

20An alternative approach to empirically implement equation (4) is to estimate factors, factor loadings and slope coeffi-
cients jointly, as in the Bai and Kao (2006) and Bai, Kao, and Ng (2009) estimators. Computational complexity aside, two
recent theoretical contributions speak in favour of the Pesaran (2006) approach adopted in this study: theoretical work by
Westerlund and Urbain (2011, p.17f) compares the former and latter approaches and concludes that “one is unlikely to
do better than when using the relatively simple CA [cross-sectional average augmentation] approach.”. Similarly, a study
by Bailey, Kapetanios, and Pesaran (2012, p.25) concludes that the methods to determine the number of strong factors the
former approach is reliant on are “invalid and will select the wrong number of factors, even asymptotically”.

21We sum the values for value-added, capital stock (both in per worker terms) and labour and then take logarithms.
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(1998) in providing sectoral investment data for agriculture and manufacturing. All monetary val-
ues in the sectoral and stylised aggregated datasets are transformed into US$ 1990 values (in the
capital stock case this transformation is applied to the investment data), following the suggestions
in Martin and Mitra (2002). Given concerns that the stylised aggregate economy data may not
represent a sound representation of true aggregate economy data we have adopted the PWT data,
which measures monetary values in International $ PPP, as a benchmark for comparison. Despite
a number of vocal critics (e.g. Johnson, Larson, Papageorgiou, & Subramanian, 2009) the latter is
without doubt the most popular macro dataset for cross-country empirical analysis.22

Our sample is an unbalanced panel23 for 1963 to 1992 made up of 40 developing and developed
countries with a total of 918 observations (average T = 23) — our desired aim to compare esti-
mates across the four datasets requires us to match the same sample, thus reducing the number
of observations to the smallest common denominator. Only eight countries in our sample are in
Africa, while around half are present-day ‘industrialised economies’ — these numbers are however
deceiving if one recalls that structural change and development in many of the latter has been pri-
marily achieved during our period of study. For instance, it bears reminding that prior to 1964,
GDP per capita was higher in Ghana than in South Korea. In 1970 the share of agricultural value-
added in GDP for Finland, Ireland, Portugal and South Korea amounted to 13%, 16%, 31% and 26%
respectively, while the 1992 figures are 5%, 8%, 7% and 8% — strong evidence of economies under-
going structural change. A detailed description of our sample is available in Table A-I, descriptive
statistics are provided in Table A-II for each sample.

III. Empirical Results

Panel unit root and cross-section dependence tests have been confined to the Supplemental Ap-
pendix (S1, S2) of the paper. We adopt the Pesaran (2007) CIPS panel unit root test to analyse the
time series properties of each variable series. Results strongly suggest that variables in levels for
the agriculture and manufacturing data as well as the two aggregate economy representations are
nonstationary.

A number of formal and informal procedures to investigate cross-section correlation in the data
were carried out. Results (see Supplemental Appendix, S2) indicate high average absolute correla-
tion coefficients for the data in log levels and even in the data represented as growth rates. Formal
tests for cross-section dependence (Pesaran, 2004; Moscone & Tosetti, 2009) reject cross-section in-
dependence in virtually all variable series tested.

In the following we discuss the empirical results from sectoral production function regressions
for agriculture and manufacturing respectively, first assuming technology parameter homogeneity
(Section ) and then allowing for differential technology across countries (Section ). For all re-

22We are of course aware that the difference in deflation between our sectoral and stylised aggregated data on the
one hand and PWT on the other makes them conceptually very different measures of growth and development: the
former emphasise tradable goods production whereas the latter puts equal emphasis on tradable and non-tradable goods
and services. However, we believe that these differences are comparatively unimportant for estimation and inference in
comparison to the distortions introduced by neglecting the sectoral makeup and technology heterogeneity of economies
at different stages of economic development.

23We do not account for missing observations in any way. The preferred empirical specifications presented below are
based on heterogeneous parameter models, where arguably the unbalancedness (25% of observations in the balanced
panel are missing) comes less to bear than in the homogeneous models due to the averaging of estimates.
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gression models we report residual diagnostic tests including the Pesaran (2007) panel unit root
test (we summarise results using I(0) for stationary, I(1) for nonstationary residuals, with I(1)/I(0)
indicating ambiguous results) and the Pesaran (2004) CD test (H0: cross-section independence),
which we take to build our judgement for a preferred empirical model. Residual nonstationarity
invalidates the inferential tools (e.g. t-statistics) employed (Kao, 1999) and indicates that regression
results are potentially spurious. Just like serial dependence may point to dynamic misspecification,
residual cross-section dependence violates the iid assumption for the error terms and indicates that
the present model fails to adequately address the correlation of inputs and output across different
countries, induced by for instance common shocks or local spillover effects.24

Note that the empirical model implemented expresses all variables in per worker terms (in logs).
The inclusion of the log labour variable then indicates/tests the deviation from constant returns to
scale (i.e. β̂L + β̂K (+β̂N) − 1): a positive (negative) significant coefficient on log labour points to
increasing (decreasing) returns, an insignificant one to constant returns. The coefficient on labour
in the regression is not the output elasticitiy with respect to labour, which we also report in a lower
panel of each table (‘Implied β̂L’),25 along with the returns to scale (‘Implied RS’). This setup allows
for an easy imposition of constant returns by dropping the log labour variable from the model.
In each table Panel (A) shows results with no restrictions on returns to scale, whereas Panel (B)
imposes CRS.

Pooled Models

Table 1 presents the empirical results for agriculture and manufacturing. Beginning with agriculture,
the empirical estimates for the models [1] and [2] neglecting cross-section dependence are quite
similar, with the capital coefficient around .63 and statistically significant decreasing returns to
scale. The land coefficient is insignificant except in the 2FE model, where it carries a negative sign.
Diagnostic tests indicate that the residuals in these models are cross-sectionally dependent, and
that the levels models (POLS, 2FE) have nonstationary residuals and thus may represent spurious
regressions. The two CCEP models yield stationary and cross-sectionally independent residuals,
capital coefficients of around .5 and insignificant land coefficients. Imposition of CRS (Panel (B))
does not change these results substantially, with the exception of the 2FE estimates, where the
land variable (previously negative and significant) is now insignificant and the capital coefficient
has become further inflated. Land is still insignificant, but at least in models [3] and [4] it has a
plausible coefficient estimate.

In the manufacturing data the models [5] and [6] ignoring cross-section dependence yield increasing
returns to scale and capital coefficients in excess of .85. Residuals again display nonstationarity
but the CD tests now imply that they are cross-sectionally independent. Surprisingly the standard
CCEP model in [7], with a capital coefficient of around .5 (like in agriculture), does not pass the
cross-section correlation test. However, further accounting for cross-sector dependence in [8] yields
favourable diagnostics and a similar capital coefficient. Following imposition of CRS all models

24If the correlation is caused by the same factors as those present in the inputs the situation is altogether more seri-
ous than mere efficiency concerns as β may be unidentified. Residual diagnostics and their importance for empirical
modelling are discussed in more detail in Eberhardt and Teal (2011a).

25This computation is based on statistically significant parameters only: β̂L = 1− (β̂K + β̂N) + β̂RS where the latter is
the log labour coefficient discussed above. If any of β̂K , β̂N or β̂RS is insignificant it is omitted from this calculation; if all
are insignificant we report ‘not applicable’ (n/a).
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reject cross-section independence, while parameter estimates are more or less identical to those in
the unrestricted models. Based on these pooled regression results, the diagnostic tests (stationary
and cross-section independent residuals) favour the CRS CCEP results in [3] and [4] for the agricul-
ture data, while in the manufacturing data the unrestricted CCEP model which accounts for cross-
sectoral impact [8] emerges as preferred specification. All other results cannot be readily interpreted
in the standard fashion due to the presence of nonstationary and/or correlated residuals.26

In summary, based on diagnostic testing the alternative CCEP estimator arises as the preferred
estimator for both the agriculture and manufacturing samples — in the former case the imposi-
tion of CRS seems valid, whereas in the latter case this is rejected by the data. Across preferred
specifications it is notable that the mean capital coefficients are quite similar for agriculture and
manufacturing, around .5. Our shift to heterogeneous technology models in the next section will
allow us to judge whether these results are representative of the underlying technology: although
the CCEP imposes common technology coefficients, theory and simulations (Pesaran, 2006) have
shown that results nevertheless reflect the mean coefficient across countries; outliers may however
exert undue influence on this mean and our heterogeneous parameter models therefore account for
this possibility and reports outlier-robust average coefficients.27

Averaged Country Regressions

Table 2 presents the robust means for each regressor across N country regressions for the unre-
stricted (Panel (A)) and CRS models (Panel (B)) respectively. The t-statistics reported for each
average estimate test whether the average parameter is statistically different from zero, following
Pesaran and Smith (1995). In addition we report the share of countries for which the country re-
sults rejected CRS as well as the share of countries for which linear country trends are statistically
significant (at the 10% level, respectively).

Beginning with the unrestricted models in Panel (A), we can see that MG and FDMG suffer from
high imprecision in both agriculture and manufacturing equations. This aside, in the agriculture
model MG yields decreasing returns to scale that are nonsensical in magnitude — simulations for
nonstationary and cross-sectionally dependent data (Coakley et al., 2006; Bond & Eberhardt, 2009)
show that MG estimates are severely affected by their failure to account for cross-section dependence
and this is likely the cause for the results. Standard CMG in agriculture and manufacturing yields
a similar capital coefficient of around .5, while the alternative CMG results (recall that these allow
for agriculture sectors to influence manufacturing ones and vice-versa) provide somewhat lower
estimates, around .3. Diagnostics are sound in case of the two CMG results in agriculture, but
only for the alternative CMG estimator in manufacturing (cross-sectionally dependent residuals
in model [7]). Panel (B) shows how imposition of constant returns affects the results: MG and
FDMG in both sectors are generally more sensible, however the diagnostic tests indicate cross-
section correlation which may indicate serious misspecification. The CMG estimates for agriculture
are now very similar; land coefficients are still insignificant but positive. Manufacturing results for

26The implication here is that these empirical results are potentially spurious. We conduct a number of robustness
checks, including further covariates in the agriculture equations (livestock per worker, fertilizer per worker) in the pooled
regression framework. Results (available on request) did not change from those presented above. We also conduct
robustness checks including human capital in the estimation equation of both sectors (linear and squared terms) —
results are confined to the Supplemental Appendix, S4 (see also discussion below).

27We use robust regression to produce a robust estimate of the mean — see Hamilton (1992) for details.
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standard CMG are virtually unchanged from the unrestricted model, but this includes the rejection
of cross-sectionally independent residuals. The same caveat applies to the alternative CMG for
manufacturing.

In summary, the diagnostic tests point to the CRS versions of the CMG estimators in the agricultural
data and the unrestricted returns to scale version of the ‘alternative’ CMG estimator in the manu-
facturing data. These preferred models suggest that average technology differs across sectors, with
the manufacturing capital coefficient around .3 and the agriculture one around .5.28

Two brief comments on the land coefficient: our preferred estimates indicate a positive albeit sta-
tistically insignificant average coefficient. Given the relative persistence of area under cultivation
the short time-series dimension of the data may be responsible for this outcome. It is important to
note that any form of quality adjustment of land would require time-varying information on land
quality, which is difficult to obtain at an annual rate over a long time horizon.29 Time-invariant
adjustments would be accounted for by the country-specific intercepts.

Given the aim of our study, we do not want to focus narrowly on the best estimate for the ‘true’
sectoral technology coefficients, but instead want to highlight the discrepancy between the results
in the present section and those we turn to when analysing aggregate economy data in the next
section.

IV. Aggregation versus Heterogeneity

Aggregation Bias — Empirical Evidence

In this section we provide practical evidence that the use of an aggregate production function will
lead to seriously biased technology estimates. We carry out this analysis by creating a stylised
‘aggregated economy’ from our data on agriculture and manufacturing. Since it might be suggested
that results could be severely distorted by the overly simplistic nature of our setup, we compare
results with those from a matched sample of aggregate economy data from the PWT. Pre-estimation
testing revealed that both datasets employed in this section are made up of nonstationary series
which are cross-sectionally correlated — results are provided in the Supplemental Appendix (S1,
S2).30

28We further implemented alternative specifications for both sectors which include the level and squared human capital
terms (average years of schooling in the adult population) as additional covariates (see Supplemental Appendix). In the
agriculture data augmentation with human capital did not lead to statistically significant results (available on request).
Manufacturing results for the MG and FDMG mirror those in the unaugmented models presented above. For the standard
CMG models we find capital coefficients somewhat below those in the unaugmented models, but still within each other’s
95% confidence intervals (we do not estimate the ‘alternative CMG estimator’ with human capital since we encounter a
dimensionality problem due to the large number of covariates). Average education coefficients are significant and indicate
high returns to eduction in manufacturing: 11% and 12% in the unrestricted and CRS model respectively.

29It can be argued that the CCE approach accounts for the induced bias for systematic distortion of the land variable: in
Eberhardt et al. (forthcoming) we suggest that similar ‘mismeasurement’ of R&D investments leading to ‘expensing’ and
‘double-counting’ bias can be addressed in a common factor approach to the Griliches knowledge production function.

30The Supplemental Appendix also contains details of an extensive simulation exercise, where we formulate a number
of production technologies for agriculture and manufacturing reflecting our insights into the effects of parameter het-
erogeneity, variable nonstationarity and cross-section dependence and analyse stylised aggregate data constructed from
these two sectors. This exercise suggests that more than any other feature the introduction of common factors (even
different ones across sectors) creates the biggest problems in the aggregate empirical results.
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We begin our discussion with the pooled models in Table 3. Across all specifications the estimated
capital coefficients in the stylised aggregated data far exceed those derived from the respective
agriculture and manufacturing samples in Table 1. Furthermore, the patterns across estimators are
replicated one-to-one in the PWT data, which also yields excessively high capital coefficients across
all models. All models suffer from cross-sectional dependence in the residuals, while there are also
indications that the residuals in the CCEP model for the aggregated data are nonstationary (those
in the two other levels specifications are always nonstationary). We also investigated the impact of
human capital (proxied via average years of schooling attained in the population over 15 years of
age) in these aggregate economy data models, but as results in the Supplemental Appendix (S4)
reveal the basic bias remains.

Turning to the results from averaged country regressions in Table 4: the MG and FDMG models
point to some differences between the aggregated and PWT data, whereby the capital coefficients in
the former are estimated very imprecisely but seem to centre around .3, whereas in the latter they
are considerably higher at around .7 to .9. Results for the conceptually superior CMG, however,
are again very consistent between the two samples and across unrestricted and CRS models, with
capital coefficients around .7. Residual testing suggests that all specifications yield stationary resid-
uals. Cross-section correlation tests reject independence in all but the PWT data unrestricted CMG
residual series.

For ease of comparison, Table 5 provides an overview of the preferred empirical results at the sec-
toral and aggregate data level, assuming common technology (top panel) or technology differences
across countries (bottom panel).31 Thus across a large number of empirical specifications we have
found there to be a systematic difference between results for the sectoral data on the one hand and
those for the stylised aggregated and aggregate economy data on the other. Theoretical work by
Hsiao, Shen, and Fujiki (2005) provides some insights as to the potential causes of this phenomenon.
They find that if variable series are nonstationary and cointegrated at the ‘micro unit’ level (in their
empirical illustration Japanese prefectures), then aggregation is only going to yield stable macro re-
lations if either all technology parameters are the same across units or provided there is no change
in their weighting to make up the aggregate economy series. With reference to our own empirical
question of interest the latter would imply the absence of any structural change in the economy
over time.

Technology heterogeneity

Our empirical analysis has been based on the theoretical model first developed in Mundlak (1988)
and like the empirical implementation in Mundlak et al. (1999) and Mundlak et al. (forthcoming)
we have had to make simplifying assumption to take this model to the data. By assuming param-
eter constancy over time we have imposed the same restriction on the parameter coefficients with
regard to the time series dimension as the latter studies. Where our empirical model has allowed
for more flexibility is in the cross-section dimension, where we have allowed for parameter hetero-
geneity across countries within each of the sectors. We first discuss our insights into technology

31As a further robustness check we ran regressions where rather than aggregate the data we forced manufacturing and
agriculture production to follow the same technology. Results (available on request) did not differ qualitatively from the
aggregated results presented above. In addition we estimated dynamic pooled models, introducing the PMG and CPMG
estimators (for results see Supplemental Appendix) — all of these results more or less confirm the patterns across sectoral
and aggregated data described above.
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heterogeneity across countries and then provide some evidence for parameter constancy.

As is evident from the empirical results in Table 1 all pooled specifications except for the CCEP
estimators yield residual series which are nonstationary and therefore we cannot rule out that the
estimated coefficients are spurious. In addition the unrestricted POLS and 2FE models for agricul-
ture as well as all POLS and 2FE models where the constant returns to scale restriction has been
imposed (in all these cases the data rejects constant returns) result in cross-sectionally dependent
residual series. In contrast, the preferred heterogeneous parameter models for agriculture and man-
ufacturing in Table 5 do not suffer from nonstationary and/or cross-sectionally correlated residuals.
In conclusion, it appears that the data for either sector rejects the crucial assumptions underlying
a pooled regression model (well-behaved residuals) and cannot reject those underlying a heteroge-
neous one. We interpret this evidence for misspecification in the pooled models as an indication for
heterogeneous production technology within each sector of production.32

Given this finding of heterogeneity one would naturally want to investigate the patterns of parame-
ter heterogeneity across countries. With the specific data at our disposal (unbalanced panel, average
T = 23) a closer analysis of whether we can identify any discernable patterns must be interpreted
with caution and we view them as merely indicative. Previous empirical analysis averaging over
individual country regressions has frequently found that while country estimates were widely dis-
persed and at times economically implausible, averages represented very plausible estimates (Boyd
& Smith, 2002; Baltagi, Bresson, Griffin, & Pirotte, 2003). Pedroni (2007, p.440) calls for caution
when interpreting the estimates for any individual country since the “long-run signals contained
in [limited] years of data may be relatively weak”, whereas the cross-section averages will amplify
the signal patterns sufficiently. Abstracting from the presence of common factors Smith and Fuertes
(2010) discuss this somewhat more formally, arguing for omitted variable bias in the country regres-
sion: assume a simple DGP

yit = βixit + wit + uit (10)

where w represents all variables omitted from the empirical model. w is assumed to be correlated
with the included regressor x in a particular country i and over a particular period of time T,
indicated by the parameter subscript iT:

wit = biTxit + vit (11)

In a single country regression of y on x we obtain

E[β̂i] = βi + biT (12)

If the wit are structural, operating in all time periods and countries, this would cause a systematic
bias in the cross-country average estimate (β̂MG).33 If they are not structural but just happen to be
correlated in a particular sub-sample then they will lead to bias in these countries’ estimates of βi.
However, averaging across countries in this case yields E[biT] = 0 such that the biases cancel out in
the average estimate β̂MG. The same principle applies to the CCEMG estimators in the presence of
unobserved common factors.

32The importance of correctly specified technology heterogeneity in the presence of nonstationary processes is discussed
in detail in Eberhardt and Teal (2011a, p.139f).

33This is akin to ignoring common factors when these drive both y and x — see Eberhardt and Teal (2011a, p.137f).

15



In the following we carry out basic analysis to obtain some insights into the patterns of technology
heterogeneity across countries. We begin by plotting the country-specific capital coefficients from
the preferred agriculture and manufacturing models in Table 5 against country mean aggregate
income per capita (from PWT, in logs). Figure 1 presents individual country estimates and linear
regression lines, together with 90% confidence intervals, for the two sectors.34 Although the cap-
ital coefficients in agriculture appear to rise with income, whereas those in manufacturing appear
to fall, the confidence intervals indicate that neither relationship is very precise from a statistical
standpoint and (full-sample) robust regressions of the two equations yield statistically insignificant
slope coefficients.35

Figure 2 is somewhat less ambitious than the previous analysis and provides density and distri-
bution plots to highlight the differential distribution of capital coefficients in the agriculture and
manufacturing equations. In the density plots on the left, manufacturing coefficients (dashed line)
are notably distributed over a much narrower range than the agriculture coefficients. In other work
on the cross-country production function in agriculture (Eberhardt & Teal, 2011b) we have argued
that this heterogeneity36 may in part be due to the difference in output structure (wheat vs. rice vs.
livestock) and in the commercialisation of agriculture (subsistence vs. industrialised farming), both
of which are functions of the level of development and productive specialisation across countries.
Manufacturing production in comparison represents a comparatively more homogeneous under-
taking, such that here the heterogeneity may be less pronounced. As the cumulative distribution
plots on the right of Figure 2 indicate the robust means we report in our regression results do not
distort the underlying relative relationship, namely that most agriculture coefficients are further to
the right and thus larger than those for manufacturing.

The graphs in Figure 3 address the question of slope parameter constancy over time by estimating
each model with an increasing number of observations and plotting the resulting estimates.37 We
plot the estimates for the CCEP (first and second row) and CCEMG (third row) capital coefficient β̂K

from the preferred agriculture, manufacturing and aggregated data models, corresponding to the
models presented in columns [1]-[3] of Table 5, Panels (A) and (B) for pooled and heterogeneous
parameter models respectively. In each plot the number of observations increases as we move
to the right: in the left plots all regressions include data from 1963-1979, the graphs then shows
the parameter estimates when we add one year of data at a time at the end of the sample period
until we reach 1992; in the right plots all regressions include data from 1976-1992, the graphs
then shows the parameter estimates when we add one year at a time at the beginning of the sample
period, until we reach 1963. In each case we begin (on the left of the plot) with a reduced sample
where Tmin

i = 11 and Tmax
i = 18, corresponding to n = 473 (n = 623 for the right plot) from

N = 34 (N = 38) countries. The solid grey line indicates the results for the aggregated data,
solid and dashed black lines are for agriculture and manufacturing respectively. In the CCEP plots

34We exclude the most extreme outliers from this plot using the following rule: we run a robust regression of the capital
coefficients on mean income pc (in logs), reported in the notes to Figure 1, further computing the weights assigned to
each observation by the algorithm. Countries with weights below 0.5 are then excluded (5 countries in the agriculture
and 1 country in the manufacturing sample).

35Following Pedroni (2007) we also replaced the mean income variable in this analysis with a number of proxies for
institutions and ‘social capital’, provided and investigated by Hall and Jones (1999). The patterns and significance levels
for the correlations between sectoral capital coefficients and these alternative variables were very similar to those for the
income correlations presented above.

36Note that whether this refers to true technology heterogeneity or simply bigger bias in the country regression for
agriculture cannot be determined in this context.

37Following the example in our main results we use robust means for the heterogeneous parameter models.
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in the second row we indicate the 90% confidence intervals for the agriculture (grey area) and
manufacturing (area between the dashed lines) estimates; here the estimates for the aggregated
data are omitted to improve illustration. In the CCEMG plots squares indicate coefficients which
are statistically insignificant at the 10% level.

We use these graphs to provide some insights into two specific questions: (i) From an econometric
point of view, are the β̂K coefficients on average constant over time? (ii) In line with the suggestion
in Mundlak et al. (forthcoming), if the βK parameters were functions of common factors (or in
their terminology: state variable) which would imply that any estimated coefficient is a constant
associated with the specific sample under analysis (β̂K(S)), we would expect differing results over
time (given different samples). Do our recursive plots provide any evidence for sample dependence
in the estimated βK coefficients? Naturally, the answer to (i) will be based on evidence for (ii) and
vice-versa, since these are in effect one and the same question but motivated from econometric and
economic theory respectively.

In the pooled models, where the preferred CCEP models yield relatively similar capital coefficients
around .5 in the full samples, the recursive regressions suggest that the agriculture (manufacturing)
capital coefficient decreases (increases) over time as we add more years of data. Since the same
pattern results whether we add years at the beginning or the end of the sample it would seem
that this pattern is driven by small sample bias: as more observations become available in each
country the results become more precise. The associated confidence intervals included in the plots
in the second row of the figure support this hypothesis: coefficient estimates in the extreme left
of each plot (reduced sample) are contained within the 90% confidence interval of the coefficient
estimates at the extreme right of each plot (full sample). Turning to the heterogenous parameter
model estimates in the bottom row of Figure 3 it is important to reiterate that the robust mean
coefficients marked with a square are statistically insignificantly different from zero. If we eliminate
these from the graphs we find remarkably stable recursive estimates for both the manufacturing
and agriculture capital coefficients. The answer to the above question (i) on parameter constancy is
thus a tentative ‘yes’. The answer to the question (ii) on sample dependence a tentative ‘no’. The
former suggests that the assumption βit = βi is valid and the latter implies that we find no evidence
for a systematic relationship between technology coefficients and unobserved time-varying factors
(or state variables) since otherwise we would not have observed such stability in the estimation
results.

V. Concluding Remarks

In this paper we employed unique panel data for agriculture and manufacturing to estimate sector-
level and aggregate production functions. Our empirical analysis emphasised the contribution of
the recent panel time-series econometrics literature and in particular the importance of parameter
heterogeneity — across countries as well as sectors. In addition we took the nonstationarity of
observable and unobservable factor inputs into account and addressed concerns over cross-sectional
dependence commonly found in macro panel data.

We draw the following conclusions from our first, crude attempts at highlighting the importance of
structural makeup and change in the empirical analysis of cross-country growth and development:
firstly, duality matters. Empirical analysis of growth and development across countries gains con-
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siderably from the consideration of modern and traditional sectors that make up the economy. Our
analysis of agriculture and manufacturing versus a stylised aggregated economy suggests that the
latter yields severely distorted empirical results with serious implications for estimates of TFP de-
rived from aggregate analysis. Analysis of PWT data in parallel with the aggregated data suggested
that this finding is not an artefact of our stylised empirical setup.

Secondly, focusing on technology and TFP within each sector, we found the data rejected empiri-
cal specifications that impose common technology, TFP evolution and independence of shocks and
evolution of observables and unobservables across countries. That is to say a standard assumption
in existing work on the dual economy model using growth accounting methods, namely that of
common technology within a sector across countries, is not in line with the data. If these restric-
tions were correct we should be able to find pooled technology models satisfying the most basic
assumptions of stationary and cross-sectionally independent residuals — in practice, however, we
find results much more in line with the notion of differential technology across countries, for which
we have provided support from economic theory.

Thirdly, the presence of unobserved common factors, both as latent processes driving all observ-
ables and as a conceptual framework for TFP, has been shown to have a substantial impact on
empirical results. Much of the cross-country empirical literature still assumes away the presence
of global economic shocks and spillovers across country borders; arguably, with the experience of
the recent global financial crisis it is now more evident than ever that economic performance in a
globalised world is highly interconnected, that domestic markets cannot ‘de-couple’ from the global
financial and goods markets and, in econometric terms, that latent forces drive all of the observable
and unobservable variables and processes we are trying to model. One important implication is
that commonly applied instruments in cross-country growth regressions are invalid — a sentiment
echoed in recent work by Clemens and Bazzi (2009). We argue that panel time series methods allow
us to develop a new type of cross-country empirics, which is more informative and more flexible in
the problems that it can address than its critics have allowed.

Fourthly, we are aware of the serious data limitations for sectoral data from developing economies,
in particular regarding the high data requirements of panel time series methods. The Crego et
al. (1998) dataset allowed us to make sectoral analysis directly comparable between manufacturing
and agriculture, however for alternative research questions the use of data from one or the other sector
may be sufficient. There are at least two existing data sources, namely FAO data for agriculture and
UNIDO data for manufacturing, which are ideally suited to inform this type of analysis at the
sector-level, for a large number of countries and over a substantial period of time.

Cross-country panel data plays a crucial role in policy analysis for development. The present work
is only a first step in establishing an empirical version of a dual economy model to inform this
literature. From the perspective of dual economy theory, we have only analysed one aspect of the
canon, namely technology heterogeneity between traditional and modern sectors of production.
In future work we will implement empirical tests to investigate the suggested sources of growth
arising from this literature, including marginal factor product differences as well as heterogeneous
TFP levels or growth across sectors.
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Tables and Figures

Table 1: Pooled regression models for agriculture and manufacturing

Panel (A): Unrestricted Returns to Scale

Agriculture Manufacturing
[1] [2] [3] [4] [5] [6] [7] [8]

POLS 2FE CCEP CCEP[ POLS 2FE CCEP CCEP[

log labour -0.060 -0.199 -0.266 -0.142 0.043 0.081 0.082 0.002
β̂L + β̂K (+β̂N)− 1 [7.20]∗∗ [9.60]∗∗ [2.13]∗ [0.55] [3.53]∗∗ [4.35]∗∗ [1.53] [0.03]

log capital pw 0.618 0.661 0.480 0.531 0.897 0.845 0.472 0.469
β̂K [73.80]∗∗ [43.62]∗∗ [9.87]∗∗ [5.92]∗∗ [55.38]∗∗ [32.69]∗∗ [7.62]∗∗ [5.34]∗∗

log land pw 0.011 -0.160 -0.165 0.052
β̂N [1.02] [4.93]∗∗ [0.98] [0.20]

Implied RS† DRS DRS DRS CRS IRS IRS CRS CRS
Implied β̂L

‡ 0.322 0.300 0.254 0.469 0.146 0.236 0.528 0.532

ê integrated\ I(1) I(1) I(0) I(0) I(1) I(1) I(0) I(0)
CD test p-value] 0.00 0.00 0.45 0.38 0.19 0.34 0.00 0.93
R-squared 0.94 0.86 1.00 1.00 0.84 0.67 1.00 1.00
RMSE 0.446 0.127 0.095 0.086 0.439 0.128 0.090 0.066

Panel (B): Constant Returns to Scale Imposed

Agriculture Manufacturing
[1] [2] [3] [4] [5] [6] [7] [8]

POLS 2FE CCEP CCEP[ POLS 2FE CCEP CCEP[

log capital pw 0.644 0.725 0.496 0.526 0.919 0.860 0.490 0.500
β̂K [85.46]∗∗ [48.87]∗∗ [11.22]∗∗ [6.70]∗∗ [70.80]∗∗ [34.01]∗∗ [13.55]∗∗ [8.38]∗∗

log land pw 0.008 -0.007 0.092 0.126
β̂N [0.66] [0.20] [1.24] [1.02]

Implied β̂L
‡ 0.356 0.275 0.504 0.474 0.081 0.140 0.510 0.500

ê integrated\ I(1) I(0)/I(1) I(0) I(0) I(1) I(1) I(0) I(0)
CD test p-value] 0.00 0.00 0.87 0.52 0.02 0.00 0.00 0.00
R-squared 0.94 0.85 1.00 1.00 0.84 0.66 1.00 1.00
RMSE 0.457 0.132 0.098 0.089 0.444 0.129 0.094 0.074

Notes: N = 40 countries, 918 observations, average T = 23. Dependent variable: value-added per worker (in logs).
All variables are suitably transformed in the 2FE equation. Estimators: POLS — pooled OLS, 2FE — 2-way Fixed
Effects, CCEP — Common Correlated Effects Pooled version (see below). We omit reporting the estimates on the
intercept term. Absolute t-statistics reported in brackets are constructed using White heteroskedasticity-robust
standard errors. For CCEP in [3],[4],[7] and [8] we report results based on bootstrapped standard errors (100
replications). ∗, ∗∗ indicate significance at 5% and 1% level respectively. Time dummies are included explicitly in [1]
and [5] or implicitly in [2] and [6]. Cross-section average augmentation in [3],[4],[7] and [8]. [ The model includes
cross-section average for both the agricultural and manufacturing sector variables respectively. † Returns to scale,
based on significance of log labour estimate. ‡ Based on returns to scale and significant parameter estimates — see
main text. \ Order of integration of regression residuals, determined using Pesaran (2007) CIPS (full results available
on request), H0: nonstationary residuals. ] Pesaran (2004) CD-test (full results available on request), H0:
cross-sectionally independent residuals. RMSE: root mean squared error.
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Table 2: Heterogeneous parameter models (robust means)

Panel (A): Unrestricted Returns to Scale

Agriculture Manufacturing
[1] [2] [3] [4] [5] [6] [7] [8]

MG FDMG CMG CMG[ MG FDMG CMG CMG[

log labour -1.935 -0.474 -0.682 -0.068 -0.132 -0.127 0.069 0.003
β̂L + β̂K (+β̂N)− 1 [2.43]∗ [0.53] [1.05] [0.08] [0.92] [1.15] [0.78] [0.03]

log capital pw -0.084 0.133 0.496 0.360 0.195 0.179 0.525 0.284
β̂K [0.42] [0.58] [2.25]∗ [1.37] [1.32] [1.12] [6.46]∗∗ [3.35]∗∗

log land pw -0.430 -0.269 -0.445 -0.129
β̂N [1.46] [0.96] [1.44] [0.50]

country trend/drift 0.015 0.010 0.015 0.018
[1.55] [1.06] [2.70]∗∗ [3.31]∗∗

Implied RS† DRS CRS CRS CRS CRS CRS CRS CRS
Implied β̂L

‡ -0.935 n/a 0.504 n/a n/a n/a 0.475 0.717
reject CRS (10%) 38% 20% 23% 23% 50% 13% 38% 25%
sign. trends/drifts (10%) 40% 18% 40% 20%

ê integrated\ I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0)
CD-test (p)] 0.00 0.00 0.49 0.75 0.00 0.00 0.02 0.18
RMSE 0.081 0.094 0.069 0.059 0.080 0.077 0.068 0.047
Observations 918 872 918 918 918 872 918 918

Panel (B): Constant Returns to Scale Imposed

Agriculture Manufacturing
[1] [2] [3] [4] [5] [6] [7] [8]

MG FDMG CMG CMG[ MG FDMG CMG CMG[

log capital pw -0.050 0.300 0.538 0.620 0.291 0.346 0.509 0.413
β̂K [0.29] [2.22]* [4.55]∗∗ [2.98]∗∗ [2.60]∗∗ [3.64]∗∗ [6.19]∗∗ [6.37]∗∗

log land pw 0.260 0.031 0.082 0.073
β̂N [1.03] [0.20] [0.47] [0.38]

country trend/drift 0.016 0.014 0.012 0.013
[2.71]∗∗ [3.09]∗∗ [2.72]∗∗ [3.61]∗∗

Implied β̂L
‡ n/a 0.700 0.462 0.380 0.709 0.654 0.491 0.588

sign. trends/drifts (10%) 45% 13% 55% 23%

ê integrated\ I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0)
CD-test (p)] 0.00 0.00 0.93 0.73 0.00 0.00 0.00 0.00
RMSE 0.087 0.096 0.076 0.068 0.088 0.078 0.080 0.059
Observations 918 872 918 918 918 872 918 918

Notes: N = 40 countries, average T = 23 (21.8 for FDMG). Dependent variable: value-added per worker (in logs). All
variables are suitably transformed in the FD equations. Estimators: MG — Mean Group, FDMG — MG with variables
in first difference, CMG — Common Correlated Effects Mean Group version. We report outlier-robust means;
estimates on intercept terms are not shown. Absolute t-statistics in brackets following Pesaran and Smith (1995).
∗, ∗∗ indicate significance at 5% and 1% level respectively. Estimates on cross-section averages in [3],[4],[7] and [8] not
reported. [ The model includes cross-section average for both the agricultural and manufacturing sector variables
respectively. † Returns to scale, based on significance of log labour estimate. ‡ Based on returns to scale and
significant parameter estimates — see main text. ‘reject CRS’ and ‘sign. trends/drifts’ reports the percentage of
countries where CRS is rejected and where country trends/drifts are statistically significant (10% level). \ Order of
integration of regression residuals, determined using Pesaran (2007) CIPS (full results available on request), H0:
nonstationary residuals. ] Pesaran (2004) CD-test (full results available on request), H0: cross-sectionally independent
residuals. RMSE: root mean squared error.
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Table 3: Pooled regression models for aggregated and PWT data

Panel (A): Unrestricted Returns to Scale

Aggregated data Penn World Table data
[1] [2] [3] [4] [5] [6]

POLS 2FE CCEP POLS 2FE CCEP

log labour 0.010 -0.082 -0.054 0.035 -0.131 -0.097
β̂L + β̂K − 1 [1.32] [3.75]∗∗ [0.78] [7.57]∗∗ [4.57]∗∗ [0.76]

log capital pw 0.828 0.798 0.657 0.742 0.704 0.631
β̂K [107.55]∗∗ [66.20]∗∗ [19.77]∗∗ [113.76]∗∗ [51.43]∗∗ [13.71]∗∗

Implied RS† CRS DRS CRS IRS DRS CRS
Implied β̂L

‡ 0.172 0.120 0.343 0.293 0.165 0.369

ê integrated\ I(1) I(1) I(0)/I(1) I(1) I(1) I(0)
CD test p-value] 0.40 0.00 0.04 0.10 0.00 0.00
R-squared 0.96 0.89 1.00 0.96 0.82 1.00
RMSE 0.358 0.109 0.078 0.195 0.095 0.061
Observations 918 918 918 912 912 912

Panel (B): Constant Returns to Scale Imposed

Aggregated data Penn World Table data
[1] [2] [3] [4] [5] [6]

POLS 2FE CCEP POLS 2FE CCEP

log capital pw 0.825 0.824 0.666 0.730 0.745 0.651
β̂K [120.48]∗∗ [73.01]∗∗ [20.85]∗∗ [130.30]∗∗ [63.41]∗∗ [19.33]∗∗

Implied β̂L
‡ 0.175 0.176 0.334 0.270 0.255 0.349

ê integrated\ I(1) I(1) I(0)/I(1) I(1) I(1) I(0)
CD test p-value] 0.31 0.30 0.06 0.00 0.00 0.00
R-squared 0.96 0.88 1.00 0.96 0.82 1.00
RMSE 0.358 0.109 0.086 0.202 0.097 0.069
Observations 918 918 918 912 912 912

Notes: N = 40 countries, average T = 23. Dependent variable: value-added per worker (in logs). All variables are
suitably transformed in the 2FE equations. Estimators: POLS — pooled OLS, 2FE — 2-way Fixed Effects, CCEP —
Common Correlated Effects Pooled version. We omit reporting the estimates for the intercept term. Absolute
t-statistics reported in brackets are constructed using White heteroskedasticity-robust standard errors. For CCEP in
[3] and [6] we report results based on bootstrapped standard errors (100 replications). Time dummies are included
explicitly in [1] and [4] or implicitly in [3] and [5]. Cross-section average augmentation in [3] and [6]. ∗, ∗∗ indicate
significance at 5% and 1% level respectively. † Returns to scale, based on significance of log labour estimate. ‡ Based
on returns to scale and significant parameter estimates — see main text. \ Order of integration of regression
residuals, determined using Pesaran (2007) CIPS (full results available on request), H0: nonstationary residuals. ]
Pesaran (2004) CD-test, H0: cross-sectionally independent residuals. RMSE: root mean squared error.
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Table 4: Heterogeneous parameter models (robust means)

Panel (A): Unrestricted Returns to Scale

Aggregated data Penn World Table data
[1] [2] [3] [4] [5] [6]

MG FDMG CMG MG FDMG CMG

log labour -0.154 -0.079 0.117 -1.152 -1.681 -0.389
β̂L + β̂K − 1 [0.36] [0.25] [0.62] [1.23] [2.28]∗ [1.03]

log capital pw 0.220 0.297 0.609 0.655 1.004 0.753
β̂K [1.17] [1.66] [6.11]∗∗ [4.22]∗∗ [5.38]∗∗ [5.26]∗∗

country trend/drift 0.025 0.020 0.010 -0.010
[2.73]∗∗ [2.42]∗ [0.90] [1.88]

Implied RS† CRS CRS CRS CRS DRS CRS
Implied β̂L

‡ n/a n/a 0.391 0.345 -1.685 0.247
reject CRS (10%) 60% 23% 38% 68% 33% 53%
sign. trends/drifts (10%) 55% 33% 43% 18%

ê integrated\ I(0) I(0) I(0) I(0) I(0) I(0)
CD-test (p)] 0.00 0.00 0.00 0.00 0.00 0.16
RMSE 0.061 0.062 0.051 0.047 0.042 0.041
Observations 918 872 918 918 866 918

Panel (B): Constant Returns to Scale Imposed

Aggregated data Penn World Table data
[1] [2] [3] [4] [5] [6]

MG FDMG CMG MG FDMG CMG

log capital pw 0.293 0.202 0.725 0.619 0.923 0.811
β̂K [1.92] [1.90] [10.95]∗∗ [6.36]∗∗ [6.01]∗∗ [12.09]∗∗

country trend/drift 0.014 0.002 -0.007
[2.93]∗∗ [0.50] [1.97]∗

Implied β̂L
‡ n/a n/a 0.275 0.381 0.077 0.189

sign. trends/drifts (10%) 48% 28% 48% 25%

ê integrated\ I(0) I(0) I(0) I(0) I(0) I(0)
CD-test (p)] 0.00 0.00 0.05 0.00 0.00 0.00
RMSE 0.074 0.064 0.067 0.061 0.044 0.059
Observations 918 872 918 912 866 912

Notes: N = 40, average T = 23 (21.8 for FDMG). Dependent variable: value-added per worker (in logs). All variables
are suitably transformed in the FD equations. Estimators: MG — Mean Group, FDMG — MG with variables in first
difference, CMG — Common Correlated Effects Mean Group version. We report outlier-robust means; estimates for
intercept terms are not shown. Absolute t-statistics in brackets following Pesaran and Smith (1995). ∗, ∗∗ indicate
significance at 5% and 1% level respectively. Estimates on cross-section averages in [3] and [6] not reported. † Returns
to scale, based on significance of log labour estimate. ‡ Based on returns to scale and significant parameter estimates
— see main text. \ Order of integration of regression residuals, determined using Pesaran (2007) CIPS (full results
available on request). ] Pesaran (2004) CD-test, H0: cross-sectionally independent residuals.
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Table 5: Comparison of preferred models

Panel (A): Homogeneous Technology

Sectoral data Aggregate data
Agri Manu Stylised PWT
[1] [2] [3] [4]

CCEP[ CCEP[ CCEP CCEP

log labour 0.002 -0.097
β̂L + β̂K (+β̂N)− 1 [0.03] [0.76]

log capital pw 0.526 0.469 0.666 0.631
β̂K [6.70]∗∗ [5.34]∗∗ [20.85]∗∗ [13.71]∗∗

log land pw 0.126
β̂N [1.02]

Implied βL
‡ 0.474 0.532 0.334 0.369

ê integrated\ I(0) I(0) I(0)/I(1) I(0)
CD test p-value] 0.52 0.93 0.06 0.00
RMSE 0.089 0.066 0.086 0.061
Observations 918 918 918 912

Panel (B): Heterogeneous Technology

Sectoral data Aggregate data
Agri Manu Stylised PWT
[1] [2] [3] [4]

CMG[ CMG[ CMG CMG

log labour 0.003 -0.389
β̂L + β̂K (+β̂N)− 1 [0.03] [1.03]

log capital pw 0.620 0.284 0.725 0.753
β̂K [2.98]∗∗ [3.35]∗∗ [10.95]∗∗ [5.26]∗∗

log land pw 0.073
β̂N [0.38]

Implied βL
‡ 0.380 0.717 0.275 0.247

ê integrated\ I(0) I(0) I(0) I(0)
CD-test (p)] 0.73 0.18 0.05 0.16
RMSE 0.068 0.047 0.067 0.041
Observations 918 918 918 918

Notes: Panel (A) of this table combines regression results from (from left to right) Table 1 Panel (B) column [4] and
Panel (A) column [8], Table 3 Panel (B) column [3] and Panel (A) column [6]. Panel (B) combines results from (from
left to right) Table 2 Panel (B) column [4] and Panel (A) column [8] and Table 4 Panel (B) column [3] and Panel (A)
column [6]. In the agricultural regressions where the CCEP and CCEP\ both had sound diagnostics (and very similar
coefficient estimates) we report the latter since it allows for greater flexibility. Results for CCEP models based on
bootstrapped standard errors (100 replications). ∗, ∗∗ indicate significance at 5% and 1% level respectively. [ Model
includes cross-section average for both the agricultural and manufacturing sector variables respectively. † Returns to
scale, based on significance of log labour estimate. ‡ Based on returns to scale and significant parameter estimates —
see main text. \ Order of integration of regression residuals, determined using Pesaran (2007) CIPS (full results
available on request). ] Pesaran (2004) CD-test, H0: cross-sectionally independent residuals.
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Figure 1: Investigating technology heterogeneity and income

Notes: These graphs investigate the issue of slope heterogeneity across countries. We plot the country estimates for the
CCEMG capital coefficient β̂K from the preferred heterogeneous agriculture and manufacturing models, corresponding
to the models presented in columns [1]-[2] of Table 5, Panel (B). The shaded areas represent 90% confidence intervals
of a linear regression of the respective capital coefficients on mean income per capita, where means are computed from
aggregate PWT data over the entire 1963-1992 time horizon. Robust regression of these relationships yield the following
(statistically insignificant) slope parameters (standard errors in square brackets): .108 [.217], -.079 [.087] for agriculture
and manufacturing respectively. Note that for both plots we exclude outliers based on weights computed from these
robust regressions: any coefficient with a weight less than .5 is excluded from the graph (for agriculture: 5 countries; for
manufacturing: 1 country).

Figure 2: Investigating technology heterogeneity across sectors

Notes: These graphs investigate the issue of slope heterogeneity across sectors. In the density plots on the left we estimate
separate Epanechnikov kernels (using common bandwidth .34) for the agriculture (solid line) and manufacturing (dashed
line) capital coefficients from Table 5, Panel (B); the right plots chart the cumulative distribution functions of the respective
sector coefficients. For both sets of plots we follow the same strategy as in Figure 1 to exclude extreme outliers.
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Figure 3: Investigating technology constancy — recursive estimates

Notes: These graphs investigate the issue of slope parameter constancy over time by estimating each model with an
increasing number of observations and plotting the resulting estimates. We plot the robust estimates for the CCEP
(rows 1 and 2) and CCEMG (row 3) capital coefficients from the preferred agriculture, manufacturing and aggregated
data models, corresponding to the results presented in columns [1]-[3] of Table 5, Panels (A) and (B) for pooled and
heterogeneous parameter models respectively.
In each plot the number of observations increases as we move to the right: in the left plots all regressions include data
from 1963-1979, the graphs then shows the parameter estimates when we add one year of data at a time at the end of the
sample period until we reach 1992; in the right plots all regressions include data from 1976-1992, the graphs then shows
the parameter estimates when we add one year at a time at the beginning of the sample period, until we reach 1963. In each
case we begin (on the left of the plot) with a reduced sample where Tmin

i = 11 and Tmax
i = 18, corresponding to n = 473

(623 for the right plot) observations from N = 34 (38) countries.
In each plot: grey solid line — aggregated data; black solid line — agriculture data; black dashed line — manufacturing
data. In the CCEP plots in the second row we indicate the 90% confidence intervals for the agriculture (grey area)
and manufacturing (area between the dashed lines) estimates; here the estimates for the aggregated data are omitted to
improve illustration. In the CCEMG plots squares indicate coefficients which are statistically insignificant at the 10% level.
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Appendix

A-1 Data construction and descriptives

We use a total of four datasets in our empirical analysis, comprising data for agriculture and man-
ufacturing (Crego et al., 1998; UNIDO, 2004; FAO, 2007), an ‘aggregated dataset’ where the labour,
output and capital stock values for the two sectors are added up, and finally a Penn World Table
(PWT 6.2) dataset (Heston et al., 2006) for comparative purposes. It is important to stress that the
former three datasets differ significantly in their construction from the latter, primarily in the choice
of exchange rates and deflation: the former use international (US$-LCU) exchange rates for the year
1990, whereas the Penn World Table dataset comprises Purchasing Power Parity (PPP) adjusted
International Dollars taking the year 2000 as the comparative base. The former thus put an empha-
sis on traded goods, whereas the latter are generally perceived to account better for non-tradables
and service. Provided that all monetary values making up the variables used in each regression
are comparable (across countries, times), and given that the comparison of sectoral and aggregated
data with the PWT is for illustrative purposes, we do not feel there is an issue in presenting results
from these two conceptually different datasets.

In all cases the results presented are for matched observations across datasets: the four datasets are
identical in terms of countries and time-periods — we prefer this arrangement for direct comparison
despite the fact that more observations are available for individual data sources, which may improve
the robustness of empirical estimates. We provide details on the sample makeup in Table A-I. The
next two subsections describe the data construction. Descriptive statistics for all variables in the
empirical analysis are presented in Table A-II.

Table A-I: Descriptive statistics: Sample makeup for all datasets

# wbcode country obs # wbcode country obs

1 AUS Australia 20 22 KEN Kenya 29
2 AUT Austria 22 23 KOR South Korea 29
3 BEL Belgium-Luxembourg 22 24 LKA Sri Lanka 17
4 CAN Canada 30 25 MDG Madagascar 20
5 CHL Chile 20 26 MLT Malta 23
6 COL Colombia 26 27 MUS Mauritius 16
7 CYP Cyprus 18 28 MWI Malawi 23
8 DNK Denmark 26 29 NLD Netherlands 23
9 EGY Egypt 24 30 NOR Norway 22

10 FIN Finland 28 31 NZL New Zealand 19
11 FRA France 23 32 PAK Pakistan 24
12 GBR United Kingdom 22 33 PHL Philippines 24
13 GRC Greece 28 34 PRT Portugal 20
14 GTM Guatemala 19 35 SWE Sweden 23
15 IDN Indonesia 22 36 TUN Tunisia 17
16 IND India 29 37 USA United States 23
17 IRL Ireland 23 38 VEN Venezuela 19
18 IRN Iran 25 39 ZAF South Africa 26
19 ISL Iceland 20 40 ZWE Zimbabwe 25
20 ITA Italy 21
21 JPN Japan 28 Total 918
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Table A-II: Descriptive statistics

AGRICULTURE DATA MANUFACTURING DATA

Panel (A): Variables in untransformed level terms

Variable mean median std. dev. min. max. Variable mean median std. dev. min. max.
Output 1.8E10 6.0E09 3.0E10 3.5E07 2.2E11 Output 7.6E10 8.8E09 2.1E11 7.2E06 1.4E12
Labour 9.6E06 1.3E06 3.5E07 3.0E03 2.3E08 Labour 1.7E06 4.8E05 3.4E06 9.6E03 2.0E07
Capital 6.5E10 1.1E10 1.5E11 2.9E07 8.6E11 Capital 1.3E11 2.0E10 3.0E11 1.4E07 1.8E12
Land 1.8E07 3.5E06 4.1E07 6.0E03 1.9E08

in logarithms
Output 22.39 22.51 1.73 17.38 26.13 Output 22.84 22.89 2.29 15.79 27.99
Labour 14.00 14.04 2.02 8.01 19.27 Labour 13.10 13.08 1.65 9.17 16.79
Capital 22.96 23.07 2.28 17.18 27.48 Capital 23.64 23.74 2.27 16.46 28.22
Land 15.11 15.07 1.99 8.70 19.07

in growth rates
Output 1.7% 1.9% 10.4% -41.5% 53.9% Output 4.4% 3.9% 10.1% -40.9% 84.2%
Labour -0.6% 0.0% 3.0% -28.8% 13.4% Labour 1.9% 1.1% 6.8% -38.8% 78.1%
Capital 1.9% 1.2% 3.6% -5.1% 31.4% Capital 4.8% 3.6% 5.0% -5.1% 53.0%
Land 0.1% 0.0% 2.2% -23.1% 13.6%

Panel (B): Variables in per worker terms

Variable mean median std. dev. min. max. Variable mean median std. dev. min. max.
Output 12,724 6,644 13,161 44.18 57,891 Output 27,093 20,475 22,111 753 101,934
Capital 52,367 9,925 63,576 13.10 222,397 Capital 63,533 43,577 64,557 1,475 449,763
Land 9.66 3.00 20.34 0.29 110

in logarithms
Output 8.39 8.80 1.83 3.79 10.97 Output 9.74 9.93 1.09 6.62 11.53
Capital 8.96 9.20 2.71 2.57 12.31 Capital 10.54 10.68 1.09 7.30 13.02
Land 1.11 1.10 1.41 -1.24 4.70

in growth rates
Output 2.3% 2.5% 10.5% -43.7% 56.0% Output 2.5% 2.5% 9.0% -67.0% 73.0%
Capital 2.5% 2.0% 4.2% -7.8% 31.1% Capital 2.9% 2.9% 6.6% -71.7% 42.4%
Land 0.7% 0.5% 3.4% -18.4% 28.8%

AGGREGATED DATA PENN WORLD TABLE DATA

Panel (A): Variables in untransformed level terms

Variable mean median std. dev. min. max. Variable mean median std. dev. min. max.
Output 9.3E10 1.7E10 2.3E11 1.1E08 1.6E12 Output 4.3E11 1.3E11 1.0E12 1.3E09 8.0E12
Labour 1.1E07 2.4E06 3.6E07 2.2E04 2.4E08 Labour 5.1E07 1.3E07 1.2E08 2.1E05 8.5E08
Capital 2.0E11 2.9E10 4.3E11 1.0E08 2.3E12 Capital 1.2E12 3.3E11 2.9E12 3.3E09 2.3E13

in logarithms
Output 23.50 23.58 2.01 18.55 28.07 Output 25.44 25.58 1.71 21.02 29.71
Labour 14.66 14.67 1.74 10.01 19.30 Labour 16.49 16.41 1.63 12.27 20.57
Capital 24.10 24.08 2.21 18.44 28.44 Capital 26.38 26.52 1.80 21.92 30.75

in growth rates
Output 3.1% 3.1% 7.4% -33.9% 42.1% Output 4.0% 4.0% 5.0% -37.1% 26.6%
Labour 0.2% 0.4% 2.6% -11.4% 19.3% Labour 1.5% 1.4% 1.1% -1.9% 4.8%
Capital 3.6% 2.7% 3.6% -5.0% 25.1% Capital 4.6% 4.2% 2.9% -1.3% 16.4%

Panel (B): Variables in per worker terms

Variable mean median std. dev. min. max. Variable mean median std. dev. min. max.
Output 19,493 11,197 19,212 72 76,031 Output 11,445 10,630 8,193 594 31,074
Capital 49,634 23,140 55,541 53 236,312 Capital 37,059 32,981 31,765 661 136,891

in logarithms
Output 8.84 9.32 1.85 4.28 11.24 Output 8.95 9.27 1.02 6.39 10.34
Capital 9.44 10.05 2.20 3.96 12.37 Capital 9.87 10.40 1.37 6.49 11.83

in growth rates
Output 3.0% 3.3% 7.0% -31.0% 44.5% Output 2.5% 2.6% 5.0% -41.2% 23.2%
Capital 3.4% 3.2% 3.8% -18.4% 22.2% Capital 3.1% 2.8% 2.9% -4.2% 14.3%

Notes: We report the descriptive statistics for value-added (in US$1990 or PPP I$2000), labour (headcount), capital
stock (same monetary values as VA in each respective dataset) and land (in hectare) for the regression sample
(n = 918; N = 40).
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A-1.1 Sectoral and aggregated data

Investment data Data for agricultural and manufacturing investment (AgSEInv, MfgSEInv) in con-
stant 1990 LCU, the US$-LCU exchange rate (Ex Rate, see comment below) as well as sector-specific
deflators (AgDef, TotDef) were taken from Crego et al. (1998).38 Note that Crego et al. (1998) also
provide capital stock data, which they produced through their own calculations from the invest-
ment data. Following Martin and Mitra (2002) we believe the use of a single year exchange rate is
preferrable to the use of annual ones in the construction of real output (see next paragraph) and
capital stock (see below).

Output data For manufacturing we use data on aggregate GDP in current LCU and the share of
GDP in manufacturing from the World Bank World Development Indicators (WDI) (World Bank,
2008). For agriculture we use agricultural value-added in current LCU from the same source. We
prefer the latter over the share of GDP in agriculture for data coverage reasons (in theory coverage
should be the same, but it is not). The two sectoral value-added series are then deflated using the
Crego et al. (1998) sectoral deflator for agriculture and the total economy deflator for manufacturing,
before we use the 1990 US$-LCU exchange rates to make them comparable across countries.

Note that the currencies used in the Crego et al. (1998) data differ from those applied in the WDI
data for a number of European countries due to the adoption of the Euro: we therefore need to use
an alternative 1990 US$-LCU exchange rate for these economies.39

Labour data For agriculture we adopt the variable ‘economically active population in agriculture’
from the FAO’s PopSTAT (FAO, 2007). Manufacturing labour is taken from UNIDO’s INDSTAT
(UNIDO, 2004).

Additional data The land variable is taken from ResourceSTAT and represents arable and perma-
nent crop land (in hectare) (FAO, 2007). For the robustness checks (results available on request): the
livestock variable is constructed from the data for asses (donkeys), buffalos, camels, cattle, chickens,
ducks, horses, mules, pigs, sheep & goats and turkeys in the ‘Live animals’ section of ProdSTAT. Fol-
lowing convention we use the below formula to convert the numbers for individual animal species
into the livestock variable:

livestock = 1.1∗camels + buffalos + horses + mules + 0.8∗cattle + 0.8∗asses
+0.2∗pigs + 0.1∗(sheep+goats) + 0.01∗(chickens+ducks+turkeys)

The fertilizer variable is taken from the ‘Fertilizers archive’ of ResourceSTAT and represents agri-
cultural fertilizer consumed in metric tons, which includes ‘crude’ and ‘manufactured’ fertilizers.
For human capital we employ years of schooling attained in the population aged 25 and above from
Barro and Lee (2001).

38Data is available in excel format on the World Bank website at http://go.worldbank.org/FS3FXW7461. All data dis-
cussed in this appendix are linked at http://sites.google.com/site/medevecon/devecondata. Stata code for empirical
estimators and tests is available from SSC: pescadf, xtmg, xtcd.

39In detail, we apply exchange rates of 1.210246384 for AUT, 1.207133927 for BEL, 1.55504706 for FIN, 1.204635181 for
FRA, 2.149653527 for GRC, 1.302645017 for IRL, 1.616114954 for ITA, 1.210203555 for NLD and 1.406350856 for PRT. See
Table A-I for country codes.
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Capital stock We construct capital stock in agriculture and manufacturing by applying the per-
petual inventory method described in detail in Klenow and Rodriguez-Clare (1997b) using the
investment data from Crego et al. (1998), which is transformed into US$ by application of the 1990
US$-LCU exchange rate. For the construction of sectoral base year capital stock we employ aver-
age sector value-added growth rates gj (using the deflated sectoral value-added data), the average
sectoral investment to value-added ratio (I/Y)j and an assumed depreciation rate of 5% to con-
struct (

K
Y

)
0j
=

IYj

gj + 0.05

for sector j. This ratio is then multiplied by sectoral value-added in the base year to yield K0j. Note
that the method deviates from that discussed in Klenow and Rodriguez-Clare (1997b) as they use
per capita GDP in their computations and therefore need to account for population growth in the
construction of the base year capital stock.

Aggregated data We combine the agriculture and manufacturing data to produce a stylised ‘ag-
gregate economy’: for labour we simply add up the headcount, for the monetary representations
of output and capital stock we can do so as well. We are afforded this ability to simply add up
variables for the two sectors by the efforts of Crego et al. (1998), who have built the first large panel
dataset providing data on investment in agriculture for a long timespan.

A-1.2 Penn World Table data

As a means of comparison we also provide production function estimates using data from PWT ver-
sion 6.2. We adopt real per capita GDP in International $ Laspeyeres (rgdpl) as measure for output
and construct capital stock using investment data (derived from the investment share in real GDP,
ki, and the output variable, rgdpl) in the perpetual inventory method described above, adopting
again 5% depreciation (this time we need to use the data on population from PWT, pop, to compute
the average annual population growth rate).
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