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“[B]ecause the additive model is not really a very good description of knowledge production,
further work on the best way to model the R&D input would be extremely desirable.”

Hall, Mairesse, and Mohnen (2009: 33)

1 Introduction

Firms invest in R&D to achieve productivity gains through innovations resulting from their
investments.1 Thus from an aggregate economy perspective, R&D is seen as crucial in achiev-
ing productivity growth and has therefore received an enormous amount of attention from
policymakers, academics, and the private business sector.2 As with any type of investment,
investment in R&D depends on its expected return — in absolute terms as well as relative to
other inputs. In addition, given the particular characteristics of knowledge, non-excludability
and non-exhaustability, private and social returns to R&D generally do not coincide. This
difference between private and social returns to R&D has motivated a range of policy inter-
ventions including direct subsidies and tax credit. From a policy perspective the question of
the return to R&D is essential, as R&D spending represents “one of the few variables which
public policy can affect in the future” (Griliches, 1979: 115).

Despite the crucial role of investments in R&D, national accounting does not record these
in a way that reflects their perceived relevance for productivity growth, although this situation
is about to change following an update of the System of National Accounts.3 But even once
R&D is covered in core national accounts, another important issue closely linked to R&D will
remain unaccounted for: knowledge spillovers. There is a vast economic literature attributing
an eminent role to R&D in generating productivity gains and long-run growth owing to the
generation of spillovers (Romer, 1990; Grossman and Helpman, 1991). Notably, spillovers
account for the difference between social and private returns to R&D. If spillovers are closely
linked to R&D, the relevant question is whether the direct effect of R&D on productivity and
its direct (i.e., private) returns can be estimated without also accounting for the spillovers it
induces.

Considering the importance of the subject, it is not surprising that there is a substantial
number of empirical studies assessing the private and social returns to R&D at the country, re-
gional, industry and firm-level.4 A closer look at this literature, which is summarized in Table
A-I in the Appendix, reveals that the most widely used approach is based on the ‘knowledge
production function’ originally proposed by Griliches (1979). In this approach, R&D stock
is added as additional input to a Cobb-Douglas production function. This means that R&D
is Hicks-neutral as it shifts the production function without directly affecting returns to the
standard inputs, labour and capital. This also implies that R&D enters the production function
in an additively separable way, which is a convenient assumption as it allows direct estima-
tion of output elasticities with respect to own-R&D, which are easily converted into returns to
R&D.5 In the Griliches knowledge production function framework, any notion of spillovers is
neglected in the empirical specification, a practice maintained in the most recent applications
(see for example Doraszelski and Jaumandreu, 2009). In parallel to this approach, there is
a large body of research concentrating on the contribution of spillovers to productivity, im-
posing a rigid structure on the spillover channels in constructing ‘spillover variables’ based on
somewhat ad hoc assumptions. This practice reflects the general lack of a clear understanding
about the precise channels through which (unobservable) spillovers occur.
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This paper asks whether spillovers have to be accounted for within the Griliches knowledge
production function framework even when the interest lies exclusively in the estimation of
private returns to R&D. If spillovers are unobserved and go unaccounted in the empirical
analysis, their presence can lead to correlation between cross-sectional units. Spillovers can,
therefore, be regarded as omitted unobserved factors in the error terms. If these unobserved
factors are correlated with R&D, the resulting estimates of private returns to R&D are biased
and inconsistent.

The dedicated knowledge spillover literature is largely unaware of the econometric im-
portance of accounting for cross-section dependence for consistent estimation and instead
concentrates on establishing the impact of ‘spillover variables’ created in a fashion akin to
employing spatial weight matrices.6 Moreover, this approach implicitly assumes that cross-
sectional correlation is exclusively generated by R&D spillovers. Hence, this approach may fail
to produce unbiased and consistent estimates of private returns in case of empirical misspec-
ification as it may not capture all of the cross-sectional dependence. This also implies that a
statistically significant spillover variable may not represent genuine knowledge spillovers but
rather reflect data dependencies more generally due to a host of other factors common to the
countries and industries included in the sample.

In this paper, we adopt a more general ‘common factor’ framework, which allows us to
remain agnostic about the nature and channels of this relationship: our primary interest is
in establishing the private returns to R&D investment at the macro-level when accounting
for any unobserved heterogeneities including local or global spillovers and common shocks.
This means that our results are neither based on ad hoc assumptions about the structure
of spillovers nor do we assume that cross-sectional dependence is generated exclusively by
knowledge spillovers. To implement our approach empirically, we use an unbalanced panel of
ten OECD countries containing data for twelve manufacturing industries covering the period
1980-2005. We find strong evidence for cross-sectional dependence and the presence of a
common factor structure in the data, which we interpret as indicative for the presence of
knowledge spillovers and additional unobserved cross-sectional dependencies.

We then compare and contrast the estimates for a Griliches knowledge production func-
tion across a number of different empirical specifications with inherently different assumptions
about error term independence (lack of R&D and/or other spillover effects) as well as tech-
nology homogeneity across countries and/or industries. This ensures that our conclusions do
not merely reflect specific assumptions imposed on an unknown data generating process.

Our findings suggest that when spillovers in the form of cross-sectional dependence are
ignored, private returns to R&D are sizeable; when we account for spillovers of unknown
form, which may include other factors than merely R&D spillovers, private returns to R&D are
at best modest. In our view, this finding is a strong indication of the presence of spillovers
and the indivisibility of R&D from spillovers. If cross-sectional dependence due to knowledge
spillovers and/or additional unobserved heterogeneity is present in the data, estimates of the
output elasticity with respect to R&D capital confound the direct effect of R&D on output with
that of spillovers and a host of other phenomena. Our findings also suggest that commonly
employed R&D spillover variables in the form of some weighted averages of R&D may, on
the one hand, fail to adequately capture all of the cross-sectional dependence present in the
data and on the other, capture broader cross-sectional data dependencies than solely genuine
knowledge spillovers.

The remainder of this paper is organized as follows: Section 2 discusses the theory un-
derlying the Griliches knowledge production function at the heart of the literature. Section 3
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discusses the theory on knowledge spillovers as well as their empirical measurement. Section
4 introduces the dataset used for our analysis and provides descriptive statistics. Section 5
contains a description of our estimation strategy and Section 6 presents the empirical results.
Section 7 concludes.

2 The Knowledge Production Function

The output elasticity with respect to R&D capital, from which the private return to R&D is
derived, is commonly estimated adopting a version of the Cobb-Douglas production function
framework. Griliches (1979) assumes an augmented production function with value-added
Y as a function of standard inputs labour L and tangible capital K as well as ‘knowledge
capital’ R

Y = F(L, K , R) (1)

With F(·) assumed to be Cobb-Douglas, knowledge capital R is treated as a complement
to the standard inputs. According to Griliches, the level of knowledge capital is a function of
current and past levels of R&D expenditure

R= G[W (B)R&D] (2)

where W (B) is a lag polynomial with B being the lag operator. Equation (2) describes the
so-called knowledge production function: the functional relation between knowledge inputs
and knowledge output.7 Griliches then writes (1) as

Y = ALαKβRγex pλt+e (3)

where A is a constant, t is a time index capturing a common linear trend λ and e is a stochastic
error term. α, β , γ and λ are parameters to be estimated. Equation (2) can be substituted
into Equation (3) to obtain output directly as a function of current and past R&D expenditure
(Hall, 1996). In order to obtain an estimable equation, we take logarithms and use subscripts
i and t to denote cross-sectional units and time respectively:

yi t = αli t + βki t + γri t +λt +ψi + ei t (4)

where lower case letters denote logarithms of the inputs in Equation (3) and λt is, more
generally than above, a time-specific effect that is (for the sake of exposition) assumed to be
common across countries and industries. ei t is an error term which contains random shocks
to the production and knowledge accumulation processes. Equation (4) contains a measure
for R&D capital stock, ri t , instead of a lag polynomial of R&D expenditures. We discuss in Ap-
pendix B-4 how the R&D capital stock (R) can be constructed from R&D expenditures (R&D).
In order to account for cross-section, unit-specific effects that remain constant over time, we
also introduce ψi. The coefficient γ measures the joint contribution of R&D to productivity
and to output prices. γ therefore indicates the elasticity of output with respect to R&D capi-
tal, i.e., γ = ∂ Y

∂ R
R
Y

. Accordingly the gross private rate of return can be obtained as ρG = γ Y
R
.

Consequently, the net rate of return is ρN = ρG − d where d is the depreciation rate of R&D
capital.

Griliches (1980) noted two important measurement problems with regard to Equation
(4): first, conventional measures of capital and labour also contain elements of R&D, which
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is thus ‘double-counted’ as R&D workers are included in the total labour force headcount and
R&D-related investments in the overall capital stock figure.8 This was conventionally taken
to imply that the coefficient associated with R&D stock is an estimate of the excess gross rate
of return to R&D, i.e., the risk premium or supra-normal profit of R&D investment over other
investment. Second, since R&D is treated as an ‘intermediate expense’ in the calculation of
value-added, measured value-added is too small by that amount.

Schankerman (1981) discusses the distorting impact of these mismeasurements in both
a growth accounting and regression framework. Within the confines of the latter he notes
that the failure to recognise the ‘double-counting’ of R&D inputs and the ‘expensing’ of R&D
can be framed as an omitted variable problem. He goes on to show that the omission of
the share of R&D workers in total labour and of R&D-related investments in total investment
leads to a downward bias on the R&D stock coefficient, which cannot be interpreted as “an
excess return in any simple sense” (Schankerman, 1981:456). The ‘expensing bias’ resulting
from the failure to account for R&D intensity may be either positive or negative, such that
the sign of the combined bias is a priori ambiguous. Some of the existing empirical evidence
in cross-section data suggests an overall downward bias in the coefficient of the R&D stock
(Schankerman, 1981; Hall and Mairesse, 1995) although the significance of this bias in panel
datasets accounting for fixed effects is subject to some debate (Cuneo and Mairesse, 1984;
Hall and Mairesse, 1995; Guellec and van Pottelsberghe, 2004). Our strategy to deal with
these econometric difficulties will be twofold: firstly, we show that the unobserved common
factor model adopted in our empirics and detailed in Section 3.2.2 is theoretically appropriate
to tackle the excess returns and expensing biases. Secondly, we follow the suggestion by
Schankerman (1981) and investigate the significance of these biases in our data using both
adjusted input values to account for ‘double-counting’ and augmented empirical equations to
account for ‘expensing’ of R&D, with results discussed briefly in Section 6 and presented in
more detail in a Technical Appendix.

The overall validity of the Griliches knowledge production function approach rests on the
assumption of perfectly competitive factor markets, full capacity utilization, as well as the
absence of spillover effects — the latter is econometrically represented by the cross-sectional
independence of error terms ei t in Equation (4). While implied by our notation in the empirical
setup described above, there is no obvious reason to require the input coefficients of the
knowledge production function to be the same across countries or industries (αi = α, βi =
β , γi = γ).9 We investigate these issues in greater detail in the following.

3 Knowledge Spillovers and other Cross-Section
Dependencies

In this section we introduce a second empirical literature that extends the Griliches knowl-
edge production framework to measure productivity gains that arise from R&D spillovers.
We discuss the main assumptions routinely made in this literature, prime amongst which is
the specification of a known, additively separable, functional form which allows the estima-
tion of separate coefficients associated with own-R&D and R&D spillovers respectively. The
approach rests on the assumption that any cross-sectional dependence present in the data re-
flects R&D spillovers and that these are accurately captured by the coefficient associated with
the spillover variable. In order to provide an answer to our research question — “Do Spillovers
Matter When Estimating Private Returns to R&D?” — that is not dependent on such ad hoc
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assumptions, we then introduce a more flexible encompassing empirical framework.

3.1 Knowledge Spillovers

Arrow (1962) pointed out that knowledge is distinct from the traditional production factors
labour and physical capital. The distinguishing features are (i) non-excludability, and (ii) non-
rivalry of knowledge. These features lead to the fact that “we do not deal with one closed
industry, but with a whole array of firms and industries which borrow different amounts of
knowledge from different sources according to their economic and technological distance from
them” (Griliches, 1979:103). Hence, knowledge spills over to other actors which do not pay
the full cost of accessing and using the knowledge. The process of unintentional knowledge
transmission from one actor to another is commonly referred to as ‘knowledge spillovers’.10

This implies that the return on investment in knowledge is partly private and partly public
(Keller, 2004).

3.2 Spillovers in the Knowledge Production Function

3.2.1 Standard Approaches

Given the fundamentally unobservable nature of knowledge spillovers, directly quantifying
their magnitude is a difficult task. Within the production function framework, the most com-
mon approach in the literature proceeds in two steps — we assume i = 1, . . . , N industries
within a single country for simplicity of exposition. First, TFP is estimated or computed from
value-added and standard factor inputs labour and physical capital; in a second step the result-
ing TFP estimates are regressed on an industry’s own R&D and some measure of knowledge
spillovers:

TFPi t = g

 

Ri t ,
N
∑

k

ωkRkt

!

(5)

where Ri t denotes the R&D stock of industry i and the second term in parentheses captures
spillovers received from all other industries (i 6= k), with ωk some explicit weights structuring
the relative ‘importance’ of industries. This setup allows for a differential impact of other in-
dustries’ R&D stocks on industry i’s productivity but comes at the cost of a rigid structure in the
specification of ωk, usually based on somewhat ad hoc assumptions. Examples of the imposed
structure for spillovers include Input/Output tables (Goto and Suzuki, 1989; Keller, 2002a),
import weights (Coe and Helpman, 1995; Keller, 1998), inward/outward FDI or shares of for-
eign affiliates’ sales in domestic sales of an industry (van Pottelsberghe and Lichtenberg, 2001;
Baldwin et al., 2005), geographic distance (Keller, 2002b), distance to technology frontier as
measured by TFP differences (Griffith et al., 2004; Cameron et al., 2005; Acemoglu et al.,
2006), and measures of technological proximity (Conley and Ligon, 2002; Guellec and van
Pottelsberghe, 2004).11

Equation (5) can be estimated as

tfpi t =ψi + γri t +χ
N
∑

k=1

ωkrkt + εi t (6)

where lower case letters denote logarithms and εi t is a stochastic shock. Equation (6) is
commonly augmented with time dummies to purge additional correlation across industries,

6



arising from common shocks (recessions, policy changes) which affect all industries in the
same way. If the sample contains industry-level data from several countries, the specification
usually also includes country fixed effects to capture country-specific effects.

The underlying assumptions made in this setup are worth emphasizing: Equation (6) as-
sumes that spillovers affect TFP linearly as captured by the corresponding parameter χ. The
spillover effect is additively separable from the own-R&D effect γ. More importantly, the
model suggests that industry TFP levels are correlated exclusively because of R&D spillovers
and that the spillover measure captures the nature of these spillovers appropriately, that is,
conditional on

∑N
k=1ωkrkt , the residuals εi t are cross-sectionally independent. Furthermore,

with special reference to the analysis of industry- or country-level data with a substantial time-
horizon, it is also assumed that the empirical specification captures the long-run equilibrium
relationship and is not distorted by dynamic misspecification or neglect of salient time-series
properties of the data. Econometrically, these assumptions translate into well-behaved, serially
uncorrelated, stationary and cross-sectionally independent regression residuals ε̂i t .

In order to avoid empirical restrictions based on ad hoc assumptions about the nature of
spillover channels as well as all of the other concerns raised above, we suggest an empirical
strategy which (i) can capture knowledge spillovers of unknown form together with any other
unobserved heterogeneities that may cause cross-sectional correlation; (ii) allows for hetero-
geneous production technology across industries; and (iii) is concerned with the appropriate
treatment of dynamics and time-series properties more generally.

3.2.2 Unobserved Common Factor Framework

The common factor approach assumes that the error term as well as the covariates in the
empirical model contain a finite number of unobserved common processes (‘factors’), whose
impact may differ across industries or countries. Recent work in this area has emphasised
the distinction between ‘strong’ factors representing global shocks such as the recent global
financial crisis, and ‘weak’ factors such as spillovers between a limited group of industries or
countries (Holly et al., 2010; Chudik et al., 2011). This setup has particular appeal for the
present analysis of returns to own-R&D in a set of interconnected OECD countries that are
subject to common shocks which, however, may impact individual economies differentially,
and where R&D may spill over from one industry or economy to another following a complex,
unknown, and non-symmetric structure.

We can illustrate the model setup in a simplified version of Equation (4) with a single
input x i t and (for generality) heterogeneous technology parameter βi = β +$i where $i ∼
iid(0,σ2

$
)

yi t = βi x i t + ui t (7)

Cross-sectional dependence arises from the multi-factor error structure and the assumed driv-
ing force of the input

ui t = ϕi ft +ψi + εi t (8a)

x i t = %i ft +πi gt +φi + ei t (8b)

where ei t and εi t are stochastic shocks. The setup assumes that latent processes drive both
productivity as well as the inputs, albeit not necessarily with the same strength (‘factor load-
ings’ ϕi and %i differ from each other). The fact that the regressor as well as the error term
share a common factor ft implies that if the factor loadings ϕi and %i are on average non-
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zero, estimating (7) without accounting for ft produces biased and inconsistent estimates of
E[βi] = β , as can be shown by simple substitution

yi t =
�

βi +ϕi%
−1
i

�

︸ ︷︷ ︸

ζi

x i t +ψi −ϕi%
−1
i φi

︸ ︷︷ ︸

ηi

+εi t −ϕi%
−1
i πi gt −ϕi%

−1
i ei t

︸ ︷︷ ︸

ςi t

(9)

= ζi x i t +ηi + ςi t

This idea extends to multiple factors and the multivariate context, such as the Griliches knowl-
edge production function where the main focus is on the coefficient of own-R&D: if the unob-
servable ft is merely a ‘weak’ factor (representing local spillovers between a small number of
industries) then the estimate of the β coefficient may not be seriously biased; however, if we
have multiple factors of the ‘weak’ and ‘strong’ type, the β coefficient is not identified.12

As suggested above, the common factor framework can also account for the omitted vari-
able bias arising from double-counting and expensing of R&D (Schankerman, 1981). If ob-
served labour, capital stock, and value-added are ‘mismeasured’ by the share of R&D workers
in total labour (si t), the share of R&D capital in capital (δi t), and the measured R&D intensity
(θi t) respectively, then the true relationship can be represented in a variant of Equation (4)
(adapted from Equation (10) in Schankerman, 1981) as

yi t = α(li t − si t) + β(ki t −δi t) + γri t − θi t +λt +ψi + ei t (10)

= αli t + βki t + γri t +
�

λt +ψi −αsi t − βδi t − θi t
�

+ ei t (11)

where λt and ψi are time- and country-industry specific effects. Provided the omitted shares
(s, δ) and R&D intensity (θ) each display some commonalities across a subset of country-
industries, e.g. increase over time in all R&D-intensive industries or increase within all indus-
tries of one country, the omitted variables in brackets can be represented by a combination
of unobserved common factors (here for simplicity: ht , it and jt) with heterogeneous factor
loadings (and a set of intercept terms)

yi t = αli t + βki t + γri t +
�

π1iht +π2i it +π3i jt +π4i
�

+ ei t (12)

Since these common factors are correlated with the R&D stock (Schankerman, 1981:456),
failure to account for their presence leads to the identification problem highlighted above. The
omitted variable problem described as the source of the R&D ‘double-counting’ and ‘expensing’
bias can thus be accommodated econometrically in our encompassing empirical framework.
We will nevertheless also estimate a version of Equation (10) in which we use observed si t ,
δi t , and θi t to account for both ‘double-counting bias’ and ‘expensing bias’ (see Section 6.1).

4 Data

The dataset comprises information on up to twelve manufacturing industries (SIC 15-37 ex-
cluding SIC 23)13 in ten countries (Denmark, Finland, Germany, Italy, Japan, Netherlands,
Portugal, Sweden, United Kingdom, and the US) over a time period of up to 26 years from
1980 to 2005, yielding a total of 2,637 observations — see Tables 1 and 2 for details.14 All of
the results presented assume the country-industry as the unit of analysis (panel group mem-
ber i), of which we have N = 119, yielding an average T = 22.2 time-series observations per
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industrial sector. The data are taken from a number sources including the EU KLEMS dataset
for the production data, the OECD for R&D expenditure and Eurostat and the OECD for GDP
deflators.

All monetary variables in our dataset are expressed in million Euros and deflated to 1995
price levels using either country- or industry-level deflators. We use double-deflated value-
added, total number of hours worked by persons engaged and total tangible assets by book
value as our measures of output, labour and capital stock respectively. R&D stock is taken
from KLEMS and extended to 2004 and 2005 using OECD data. In addition we construct the
R&D capital stock series for Portugal, following the method adopted by KLEMS. We provide
more details on data construction and assumptions made in Appendix B.

Table 3 contains descriptive statistics for the data sample used in our regression analysis.
In Figure 1 we provide box plots for value-added, physical capital stock and R&D capital stock
for the year 2005 (all deflated by million working hours), sorted by median value. As can
be seen in the cross-country analysis of the left column, Japan is near the top for all three
measures, whereas Portugal maintains the bottom position. The latter country aside, the
distribution of value-added and physical capital stock per hour worked is relatively similar
across these economies and has a narrow interquartile range, whereas the R&D capital stock
per hour worked varies much more substantially. For the cross-industry analysis in the right
column we can note that the Chemicals industry (SIC 24) tops all three graphs while Textiles
(SIC 17-19) and Other Manufactures (SIC 36/37) can be found toward the bottom. Cross-
industry variation is much stronger than cross-country variation and features more outliers,
particularly for the R&D stock variable.

As a means of pre-estimation analysis of the data, we investigate the time-series and cross-
section properties of all variables using panel unit root tests of the first (Maddala and Wu,
1999) and second generation (Pesaran, 2007), average cross-section correlation coefficients
as well as a formal test for cross-section dependence by Pesaran (2004). Detailed results are
presented in a Technical Appendix. We also employ these tests in our residual diagnostics
for each of the empirical models presented below. The panel unit root tests suggest that
all variables are integrated of order one. The analysis of cross-section correlation indicates
substantial dependence for the variables in levels as well as first differences.15

5 Estimation Strategy

By the nature of our research question, the empirical implementation will be carried out using
different estimators, each of which will impose different assumptions about the underlying
data generating process, which can in part be tested using a range of diagnostic tests ap-
plied to the residuals.16 This ensures that our empirical findings do not simply mirror specific
assumptions imposed by different empirical specifications and estimators. We employ the fol-
lowing general regression equation and use the scheme in Table 4 to structure the different
approaches into a common framework.

yi t = αi li t + βiki t + γi ri t +λi t +ψi + ei t (13)

ei t = ρiei,t−1+ ui t

where l, k and r are labour, capital stock and R&D stock (in logarithms).
A first distinction is to be made between common and heterogeneous parameter mod-

els: the former, ‘pooled’ estimators, assume common technology parameters on factor inputs
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across all countries and industries (αi = α, βi = β , γi = γ∀ i), while the latter relax this as-
sumption to a varying degree.17 Typical pooled estimators include the least squares estimator
augmented with year dummies (POLS) or the Two-way Fixed Effects estimator (2FE) which
contains country-industry as well as time fixed effects. ‘Mean Group’ type estimators allow for
technology heterogeneity by running country-industry specific regressions and then averaging
the coefficients across the panel. Results for individual country-industry pairs are unreliable
(unless T is large) and are often difficult to interpret, whereas panel averages establish a reli-
able mean estimate (Boyd and Smith, 2002). In Table 4 the distinction between common and
heterogeneous technology parameters is between the upper and lower panels.

A second distinction is made between static and dynamic models, which is implemented
for the common and heterogeneous technology models, respectively. Investigating long-run
equilibrium relations in a static model without any lagged variables may oversimplify the
dynamic adjustment of the system and may mistake short-run deviations for long-run effects.
A first attempt at dealing with this is to specify a simple Autoregressive Distributed Lag model
(ARDL), which can be derived from Equation (13) for ρi 6= 0

yi t = ρi yi,t−1+αi li t −ρiαi li,t−1+ βiki t −ρiβiki t + γi ri t −ρiγi ri t (14)

+(λi t −ρiλi,t−1) + (1−ρi)ψi + ui t

Equation (14) is commonly estimated in an unrestricted version without the non-linear (‘com-
mon factor’) restrictions implied. Based on empirical testing, the long-run relationship in the
data can then be evaluated either with or without restrictions. Apart from standard pooled
estimators (POLS, 2FE) we also employ the dynamic micro-panel estimator by Blundell and
Bond (1998, BB).18 The latter deals with the problem of ‘Nickell bias’ (Nickell, 1981) in a dy-
namic panel data model with fixed effects, which yields inconsistent estimates in samples with
limited T . The unique instrumentation employed, using transformed equations and lagged
values of endogenous variables, has the additional attraction that it can provide ‘internal’ in-
struments for any endogenous variable in the model. Despite a number of problems (Bowsher,
2002; Roodman, 2009) this type of micro panel estimator has become very popular for use in
macro panel data. The BB estimators solves the identification problem we discussed in Section
3.2.2 (correlation between observed inputs and unobservables/TFP) but relies on the crucial
assumption that technology parameters (α, β , γ) do not differ across country-industries.19

The distinction between static and dynamic models is highlighted in Table 4.
A third distinction relates to the concerns over cross-section dependence, including both

knowledge spillovers as well as any other type of spillovers and/or common shocks. As we
developed above, the various types of cross-section correlation are modelled in our empiri-
cal strategy using unobserved common factors.20 The distinction between the left and right
column in Table 4 represents different assumptions about the impact of these unobservables.

All the pooled estimators in the left column of Table 4 are augmented with year dummies
(in the 2FE case implicitly) which can account for the presence of unobserved common factors
provided their impact does not differ across country-industries. For the empirical models in
Equations (13) and (14) this would imply λi t = λt . The evolution of the unobservables over
time is not constrained in any way, thus could be linear or nonlinear, stationary or nonstation-
ary. In the lower panel of the Table, the Mean Group estimator with variables in deviation
from the cross-section mean (CDMG) maintains the same assumption about a common impact
of unobservables across country-industries but allows for differential technology parameters.

The right column of Table 4 contains estimators which allow for the impact of unobserved
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common factors to differ across countries and industries. Among the Mean Group type es-
timators in the lower panel of the Table, the Pesaran and Smith (1995) Mean Group (MG)
estimator can be augmented with country-industry specific linear trends which allow for a dif-
ferential impact of unobservables across country-industries whilst imposing linearity on their
evolution. The Pesaran (2006) Common Correlated Effects (Pooled or Mean Group) esti-
mators account for unobserved common factors with heterogeneous factor loadings by using
cross-section averages of the dependent and independent variables as additional regressors.
This allows for more flexibility as the impact of the unobserved common factors can differ
across country-industries while the evolution of these factors may be nonlinear or even non-
stationary (Kapetanios et al., 2011).21 To see the intuition behind this approach, consider the
cross-section average of our pet model from Equations (7), (8a) and (8b) above, replicated
here for convenience22

yi t = βi x i t +ϕi ft +ψi + εi t (15)

ȳt = β̄ x̄ t + ϕ̄ ft + ψ̄ given ε̄t → 0 as N →∞
⇔ ft = ϕ̄−1( ȳt − ψ̄− β̄ x̄ t) (16)

where cross-section averages at time t are defined as ȳt = N−1
∑N

i=1 yi t and x̄ t = N−1
∑N

i=1 x i t .
23

In words, as the cross-section dimension becomes large the unobserved common factor ft can
be captured by a combination of cross-sectional averages of y and x . Substitution for ft in
Equation (15) yields

yi t = βi x i t +ϕiϕ̄
−1
�

ȳt − ψ̄− β̄ x̄ t

�

+ψi + εi t (17)

⇔ yi t = βi x i t +π1i ȳt +π2i x̄ t +π3i + εi t (18)

As can be seen the parameters of ȳt and x̄ t as well as the intercept π3i must be country-
industry specific to capture the heterogeneity in the factor loadings ϕi. In the heterogeneous
technology version of the estimator (CMG), where we allow for βi 6= β , this is achieved by
construction since each country-industry is estimated separately. In the pooled version (CCEP)
the cross-section averages need to be interacted with country-industry dummies, so that each
country-industry can have a different parameter on the cross-section averages. Both estima-
tors can accommodate a fixed number of ‘strong’ common factors and an infinite number of
‘weak’ common factors (Chudik et al., 2011), where the former can be thought of as common
global shocks and the latter as local/regional spillover effects. The focus of this estimation
approach is to obtain unbiased estimates for β or the mean of the heterogeneous βi; since
various averages of the unknown parameters are contained in π1i, π2i and π3i these cannot
be interpreted and should be seen as merely accounting for the cross-section dependence in
the data.

6 Results

In the following we discuss the empirical results from our study of ten OECD economies with
up to twelve manufacturing sectors each. We follow the scheme in Table 4, beginning with
common technology models (static, dynamic), then moving on to heterogeneous technology
models (static, dynamic). Within each of these four groups, estimators differ in their assump-
tions about cross-section dependence/common factors. In order to evaluate rival empirical
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models we use a number of diagnostic tests including a Wald test of constant returns to scale
(α+ β + γ = 1), serial correlation tests (in the static models only), common factor restriction
tests (in the dynamic models only), residual cross-section correlation tests (Pesaran, 2004)
and residual stationarity tests (Pesaran, 2007). In addition we provide the root mean squared
error (RMSE) statistic for each regression model to indicate a measure for goodness of fit.

6.1 Common Parameter Models

Table 5 contains the results for standard pooled panel estimators in their static specification
(POLS, 2FE, FD) as well as for the CCEP estimator in its standard version and augmented with
common year dummies. All five models yield statistically significant and sensible parameter
estimates for capital and labour inputs, ranging from .2 to .5 and .45 to .65 respectively.
The coefficient of the R&D stock is large and highly significant in the POLS case and to a
lesser extent in the 2FE and CCEP models. Although of relatively similar magnitude, the R&D
coefficient in the FD model is not significant at the 5% level. All parameter estimates are
economically plausible.

Turning to the diagnostics, it is suggested that POLS and 2FE yield nonstationary residuals
and we therefore cannot rule out spurious results, even in a panel regression (Kao, 1999).
Serial correlation is present in all five models (AR(1) is to be expected in the FD case) and
curiously the residual CD tests for cross-section independence seem to reject in case of CCEP
estimators. The measure of fit indicates that the FD and CCEP models have similar residual
standard deviations, which are much smaller than those for the POLS and 2FE models.

Our interpretation of these results is that the standard pooled models in levels (POLS, 2FE)
are seriously misspecified, given their serially correlated and nonstationary residuals. Since
these models do not seem to suffer from cross-sectionally correlated residuals and the FD
yields more favourable diagnostics we suggest that the source of the misspecification derives
either from the (lack of) dynamics or the erroneous pooling of all country-industries (common
technology). The CCEP models fail to address the concerns for which they were developed,
namely to account for all cross-section dependencies; again, possible causes include the two
misspecifications suggested. Our preferred pooled model in the static specification is thus
the FD, which yields an R&D coefficient roughly one half in magnitude of the standard OLS
estimator, albeit statistically insignificant.

Table 6 turns to the results for the dynamic specifications. In order to ease comparison
with the static results we only report the long-run coefficients implied by the common factor
restrictions (ARDL model estimates based on Equation (14) are available on request). Implied
long-run coefficients for capital and labour vary substantially across the five models presented,
from .1 to .9 and -.5 to .7, respectively. All but the POLS model in [1] result in very low and/or
statistically insignificant R&D capital. For the POLS estimator it seems that identification of
capital stock in the presence of R&D stock is challenging and although the diagnostic tests
indicate some favourable residual diagnostics these results are still somewhat questionable
— the identification problem highlighted in Equation (9) above is most likely the culprit for
this outcome. The poor performance of the BB estimator (negative albeit insignificant labour
coefficient), relying on lagged levels variables as instruments for contemporaneous first differ-
ences and on lagged differences for levels, highlights the persistence and likely nonstationarity
of the data. The two CCEP estimators yield similar results, with R&D capital insignificant and
around .03.

Diagnostics for these models seem to suggest that only the 2FE and CCEP models yield
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stationary residuals, while the popular micro-panel estimator (BB) further fails the instrument
validity (Sargan) test.24 Once we take the possibility of cross-section dependence (spillovers,
common shocks) explicitly into account in models [4] and [5] we see a substantial reduction
in the coefficient of R&D capital, and we can no longer detect a statistically significant impact.
Given their favourable diagnostics, our preferred dynamic pooled models are the standard and
augmented CCEP in columns [4] and [5].

We have argued in Section 3.2.2 above that the concerns over double-counting and ex-
pensing of R&D should be alleviated in a panel model accounting for unobserved common
factors. We nevertheless also offer results that are obtained from explicitly correcting the
input variables and value-added for mis-measurement following Schankerman (1981). How-
ever, the data required to correct for double-counting and expensing are only available for a
subset of countries, industries and time periods. Hence, the sample used to explore the effect
of explicitly correcting the data is less than 30% of the size of the original sample. This lack
of data allows us only to implement the static specification of our pooled model for which
we estimate two specifications: i) directly correcting the input variables and ii) augmenting
the specification with the omitted variables. Furthermore, the CCEP estimators were dropped
since their use would have lead to a further halving of the sample while it is also unlikely that
these estimators would perform as expected in the resulting short-T panel (average T = 7.5).
To briefly summarize, we find that the results obtained from the corrected data suggest some
downward bias in the R&D coefficient, mostly due to double-counting, but produce statisti-
cally insignificant R&D coefficients (except for POLS). The models which add s, δ and θ to the
regression show very little impact on the R&D capital coefficient throughout. A more detailed
discussion of the approach and the corresponding results is relegated to a Technical Appendix.

6.2 Heterogeneous Parameter Models

In our results for the static and dynamic models in Tables 7 and 8 we focus on the most flexible
specification where each country-industry is allowed to follow a different production function
— we also investigated intermediate models using country- or industry-level regressions which
yielded qualitatively similar results regarding R&D capital stock (available on request).

The average labour coefficients in our static results in Table 7 are again quite similar across
all models, between .56 and .70 and thus close to the macroeconomic data on factor income-
share in developed economies (e.g. Gomme and Rupert, 2004). Capital coefficients are how-
ever notoriously difficult to estimate precisely, so it is not surprising that only in the CDMG
model in column [2] we obtain statistically significant results. Results for the capital coeffi-
cient in the two CMG specifications in columns [3] and [4] are plausible (given the impreci-
sion) if somewhat on the low side. Only the CDMG model yields a statistically significant R&D
stock coefficient and it bears noting that overall the CDMG results are very similar to those of
the pooled OLS model in Table 5.

Once we take the diagnostic tests into account, we can see that MG and CDMG suffer
from cross-sectionally dependent, serially dependent and possibly nonstationary residuals —
provided we want to distinguish between empirical models using these testing procedures the
conclusion must be that these models are seriously misspecified. The two CMG models obtain
much more favourable diagnostic results, no longer rejecting cross-section independence, with
the model without country trends in column [3] being preferable due to the more convincing
evidence for residual stationarity.

We can conclude from this analysis that the imposition of a rigid structure on the nature of
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spillovers and common shocks — as is the case in the CDMG model where shocks are assumed
to impact all country-industries in an identical way — produces a spuriously high coefficient
of the R&D capital stock, which is substantially reduced once we allow for a more flexible
structure in the CMG models.25

The dynamic models for which we present results in Table 8 (based on empirical testing
we impose common factor restrictions; full results are available on request) represent a con-
siderable challenge for our data given the moderate time-series dimension available: these
models are estimated with between 8 and 17 covariates in the CDMG and trend-augmented
CMG models respectively. Due to this dimensionality problem we are forced to drop a num-
ber of countries (GER, PRT, SWE) from the analysis in the CMG models — results for the
MG and CDMG in this reduced sample were qualitatively very similar to those presented so
we report results for the larger sample for these two models. Given these data problems we
only view these results as tentative evidence and merely highlight the similar patterns to the
static heterogeneous models discussed above: CDMG yields a spuriously high R&D coefficient
due to the imposition of common impact of unobservables across country-industries; once
this assumption is relaxed in the CMG models in columns [3] and [4] the coefficient drops
substantially in magnitude and is no longer statistically significant.26 Diagnostic tests again
suggest that MG and CDMG yield possibly nonstationary residuals and all models raise some
concerns over residual cross-section dependence.

In summary, our empirics have paid particular attention to residual cross-section depen-
dence, which in economic terms can be interpreted as knowledge spillovers and/or other
unobserved shocks but econometrically raises serious concerns regarding consistency of the re-
gression estimates. We offer a number of alternative specifications for the empirical model, al-
lowing for dynamics as well as technology heterogeneity across countries. We find across these
alternatives that models which yield a large and statistically significant coefficient of own-R&D
are seriously misspecified (nonstationary, serially correlated and/or cross-sectionally depen-
dent residuals). In contrast, once our diagnostic tests are more favourable the coefficient of
own-R&D always drops considerably and becomes statistically insignificant. We take this as
a clear indication that spillovers, be they true knowledge spillovers or other common shocks,
matter and cannot be ignored even when the interest lies exclusively in estimating private
returns to R&D.

7 Concluding Remarks

In this study we asked whether returns to R&D can be estimated in a standard Griliches-
type production function framework ignoring the potential presence of knowledge spillovers
between cross-sectional units as well as other cross-section dependencies. Finding an answer
to this question is relevant considering the vast amount of empirical work either implementing
a Griliches-type production function under the assumption of cross-section independence, or
investigating knowledge spillovers, assuming a known, additively separable functional form
for R&D and spillovers and positing that no other cross-section dependencies are captured by
the ‘R&D spillover’ variable. The main claim of this paper is that the Griliches framework is
inadequate even when the analysis focuses exclusively on private returns to R&D.

Using data for 12 industrial sectors in 10 OECD countries our results suggest the con-
ventional Griliches-type knowledge production function model is indeed seriously misspeci-
fied, with diagnostic tests pointing at nonstationary and serially correlated residuals. Across
static and dynamic as well as pooled and heterogeneous parameter models we can trace a
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pattern whereby estimators which explicitly account for cross-section dependence and are ro-
bust to variable nonstationarity yield substantially lower coefficients for the R&D capital stock
which are statistically insignificant in most cases. These findings suggest that conventional
approaches imply large and significant private returns to R&D, while specifications accounting
for cross-section dependence imply relatively limited private returns to R&D.

These results may be explained by at least two types of arguments and most likely by a
combination of the two. First, R&D is a worthwhile undertaking. Yet, its value stems from a
complex mix of own R&D successes and spillovers received rather than from a clearly identifi-
able stream of returns to an industry’s own R&D investment: once we account for spillovers,
private returns to R&D are modest. Second, the empirical approach taken here does not just
account for knowledge spillovers but for any other cross-section dependencies, including other
types of productivity spillovers unrelated to R&D as well as the impact of common shocks. The
true, social return to R&D investment is likely to be substantially higher. It is partly the re-
sult of interactions between factor inputs as well as between countries and industries. It can
therefore not be extracted in a ceteris paribus fashion as is common in a knowledge production
function building on additive separability and focusing on private returns.

Our analysis, therefore, offers two conclusions: first, even when the objective is to identify
only private returns to R&D, spillovers cannot be ignored. Second, only including measures
capturing R&D spillovers in the empirical equation is unlikely to account appropriately for
cross-sectional dependence that is commonly generated by the complex interplay of a range
of unobserved processes. Instead, the coefficient associated with the ‘R&D spillover’ variable
is likely to at least in part capture common shocks and cross-sectional dependence that arises
for reasons other than genuine knowledge spillovers. The common factor approach adopted
in our analysis offers a way of recovering private returns by stripping the estimates from any
other confounding factors.

While our analysis sheds some light on the importance of spillovers and other causes of
cross-section correlation in the estimation of private returns to R&D, we do not recover a
parameter associated with spillovers and therefore cannot make any statements regarding the
social returns to R&D. If social returns are the object of interest, more structure needs to be
imposed on the nature of spillovers to be able to recover the corresponding parameter within
a spatial econometric framework. Any such analysis thus necessarily involves the question of
how to measure spillovers.27 We deliberately avoided addressing this question by adopting an
agnostic common factor approach in order to escape the need to make ad hoc assumptions
about the unobserved structure of spillovers. In our mind, the search for a more appropriate
specification of the knowledge production function that accounts for the true nature of cross-
sectional interdependencies and allows identification of private and social returns to R&D
should be regarded as the main challenge for the investigation of returns to R&D in years to
come.
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Endnotes
1In this paper we focus entirely on R&D conducted by the business enterprise sector.
2We use the terms productivity and TFP interchangeably throughout this paper to describe

the residual of a production function.
3R&D is treated as an intermediate input for firms and as current consumption for govern-

ments and non-profit organizations (Edworthy and Wallis, 2007). Following the changes to
the System of National Accounts in 2008 it is now recommended to treat existing and past
R&D as an asset which is capitalized through ‘satellite accounting’. The principal motivation
for treating R&D expenditure as investment in National Accounting is to compute its contribu-
tion to growth in real GDP.

4A comprehensive overview of earlier work can be found in Cameron (1996), while Hall et
al. (2009) cover more recent studies.

5Alternatively, returns to R&D can be obtained directly from using R&D expenditure albeit
under the restrictive assumption that knowledge does not depreciate (Hall et al., 2009).

6A spatial econometric approach would capture spillovers by imposing a specific structure
on the ‘spatial’ association between countries and/or industries by means of a spatial weight
matrix, where the relevant ‘space’ can be defined in many ways such as geographical, techno-
logical, or input-output-based. However, the specification of the spatial weight matrix, which
simply produces weighted averages of the R&D variable, remains essentially arbitrary.

7Crepon et al. (1998) stress the point that not innovation input (R&D) is supposed to affect
productivity, but innovation output. In common with a large number of empirical studies, they
use patents as a measure for knowledge output. This however seems too narrow a measure,
since knowledge output can also assume many other forms (new products, capital goods, or
improved managerial practices). Since R&D is underlying these different innovative outputs,
it may be a better and more comprehensive measure of innovation than restricting the analysis
to patented innovations.

8We are grateful to an anonymous referee for highlighting the problems introduced by
double counting and expensing.

9Motivation for technology heterogeneity of this type can be taken from the ‘new growth’
literature (e.g. Aziarides and Drazen, 1990; Banerjee and Newman, 1993) which has resulted
in a limited empirical literature (see Eberhardt and Teal, 2011).

10This phenomenon must not be confounded with targeted knowledge transfer, e.g. tech-
nology transfer within (international) business groups.

11Our literature review in Table A-I of the Appendix contains more details and additional
studies.

12The literature on productivity analysis at the micro-level refers to this as ‘transmission
bias’, which arises from firms’ reaction to unobservable productivity realisations when making
input choices. Solutions to this problem are then sought via instrumentation of one form or
another (for a recent survey of the literature see Eberhardt and Helmers, 2010).

13We exclude industry SIC 23 (Coke, refined petroleum products and nuclear fuel) for which
several countries do not report data.

14The selection of countries is determined by data availability. Note that we use data for
Germany only after its reunification in 1990.

15Interestingly, testing the residuals from a pooled AR(2) regression for each of the variables
cannot reject cross-section independence for value-added, labour and capital stock, whereas
these tests do reject for residuals from country-specific AR(2) regressions — the R&D stock
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variable however displays substantial cross-section dependence throughout all of these testing
procedures possibly indicating the presence of R&D spillovers and other cross-section depen-
dencies.

16The empirical analysis was carried out in Stata 10 and we employed a number of user-
written Stata routines: multipurt, xtcd and xtmg by Markus Eberhardt; pescadf by Pi-
otr Lewandowski; xtfisher by Scott Merryman; abar and xtabond2 by David Roodman;
md ar1 by Måns Söderbom. Routines are available through SSC or the authors’ personal
webpages.

17Our main focus is on the most flexible setup where each country-industry can have a
different set of technology parameters. Results for alternatives (country- or industry-level
homogeneity) are available on request.

18We also considered the Arellano and Bond (1991) estimator, which commonly performs
poorly when data are highly persistent (results available on request).

19If this assumption is violated no instrument (internal or external) exists which can satisfy
both the conditions of validity and informativeness (Pesaran and Smith, 1995).

20Note that in standard fashion in all but the POLS models we account for time-invariant
unobservables (fixed effects) using dummy variables or model transformations (e.g. first dif-
ferencing).

21These estimators are further remarkably robust to structural breaks, lack of cointegration
and certain serial correlation.

22Note that in the case of multiple covariates we construct cross-section averages for each
in turn: x̄1t , x̄2t , . . . , x̄kt .

23We use the arithmetic mean, but it is notable that weighted means can be applied here,
provided they submit to certain (granularity) conditions (Pesaran, 2006).

24As is so often the case in long-T panels, the AB (available on request) and BB results are
very fragile and are dependent on the lag structure chosen for instrumentation. In the AB
model we use lagged levels of yi t , li t , ki t and ri t dated t − 3 and earlier as instruments in the
first difference equation, collapsing the instrument matrix to avoid overfitting bias (Bowsher,
2002). We then applied the same strategy in the BB model (in addition we employ lagged
differences as instruments in the levels equation) but tested a considerable number of alter-
natives. In none of the latter did we obtain a coefficient of R&D stock in excess of .05, all of
which were statistically insignificant.

25We also conducted these MG-type regressions (static and dynamic) using (outlier-robust)
weighted averages instead of the unweighted averages reported in Tables 7 and 8 — findings
are qualitatively identical and confirm that our results are not driven by outliers.

26The results reported are based on long-run coefficients calculated from the average coef-
ficients in the ARDL model. When we calculate long-run coefficients in each industrial sector
and average these, the results are qualitatively the same.

27The practical problem consists in splitting ‘knowledge spillovers’ from ‘common shocks’
and other cross-section dependencies. For instance, the use of the CCE estimators in a dedi-
cated spatial econometric model fails to recognise that the cross-section averages included in
the specification already account for both common shocks and spillovers. It is however antici-
pated that theoretical developments in this field of research will offer appropriate alternative
methods in the near future.
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FIGURES AND TABLES

Figure 1: Labour-Deflated Input Variation across Countries & Industries

Notes: The data is transformed into mio. Euros per mio. working hours (in logs) and plotted
in order of median value. The left column plots variation by country, the right column by SIC
2-digit industry. All data presented in this graph are for 2005. Dots indicate outliers.
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Table 1: Sample makeup: Countries

Country Obs Share Coverage

DNK Denmark 312 12% 1980-2005
FIN Finland 312 12% 1980-2005
GBR Great Britain 308 12% 1980-2005
GER Germany 180 7% 1991-2005
ITA Italy 312 12% 1980-2005
JPN Japan 312 12% 1980-2005
NLD Netherlands 312 11% 1980-2005
PRT Portugal 121 5% 1995-2005
SWE Sweden 156 6% 1993-2005
USA United States 312 12% 1980-2005

Total 2,637 100%

Table 2: Sample makeup: Industries

SIC Description: Manufacture of Obs

15, 16 Food, beverages, tobacco 221
17, 18, 19 Textiles, textile products, leather and leather products 221
20 Wood and products of wood and cork 219
21, 22 Pulp, paper, paper products, printing and publishing 219
24 Chemicals and chemical products 221
25 Rubber and plastic products 210
26 Other non-metallic mineral products 221
27, 28 Basic metals and fabricated metal products 221
29 Machinery and equipment n.e.c. 221
30, 31, 32, 33 Electrical and optical equipment 221
34, 35 Transport equipment 221
36, 37 Manufacturing n.e.c. 221

Total 2,637

Notes: Industrial sector SIC 23 (coke, refined petroleum products and nuclear fuels) is excluded.
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Table 3: Summary statistics

Mean Median Std. Dev. Min Max

LEVELS

Value-Added (mio. Euro) 27,805 7,992 52,554 290 782,206
Labour (mio. hours worked) 917 393 1,219 15 6,612
Physical Capital (mio. Euro) 40,462 14,535 64340 242 459,870
R&D Capital (mio. Euro) 13,184 846 39,998 0.4 328,954

LOGARITHMS

ln Value-Added (ln Yi t) 8.987 8.986 1.683 5.668 13.570
ln Labour (ln Li t) 5.821 5.974 1.554 2.684 8.797
ln Physical Capital (ln Ki t) 9.431 9.584 1.669 5.487 13.039
ln R&D Capital (ln Ri t) 6.881 6.741 2.505 -0.937 12.704

GROWTH RATES

∆ ln Value-Added 0.018 0.015 0.072 -0.412 1.081
∆ ln Labour -0.015 -0.013 0.044 -0.269 0.185
∆ ln Physical Capital 0.020 0.017 0.031 -0.134 0.213
∆ ln R&D Capital 0.037 0.031 0.064 -0.125 0.790

Notes: These descriptive statistics refer to the sample for N = 119 country-industries (from
OECD 10 countries), which in levels contains n = 2, 637 observations, average T = 22.2
(range 1980-2005).

Table 4: Overview of Empirical Approach

Impact of Unobservables:
common heterogeneous

Technology common Static
Parameters: POLS, 2FE, FD CCEP

Dynamic
POLS, 2FE, BB CCEP

heterogeneous Static
CDMG MG, CMG

Dynamic
CDMG MG, CMG

Notes: POLS – Pooled OLS (with year fixed effects), 2FE – 2-way Fixed Effects, FD – First-
Difference OLS, BB – Blundell and Bond (1998), CCEP – Pooled Pesaran (2006) Common
Correlated Effects (CCE), MG – Pesaran and Smith (1995) Mean Group, CDMG – Cross-Section
Demeaned Mean Group, CMG – Pesaran (2006) CCE Mean Group version.
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Table 5: Pooled Production Functions (static)

POLS 2FE FD CCEP CCEP
[1] [2] [3] [4] [5]

ln Li t 0.464 0.608 0.634 0.563 0.582
[40.72]∗∗ [18.41]∗∗ [18.01]∗∗ [19.01]∗∗ [19.01]∗∗

ln Ki t 0.465 0.487 0.274 0.295 0.203
[37.59]∗∗ [10.60]∗∗ [3.66]∗∗ [7.08]∗∗ [4.45]∗∗

ln Ri t 0.096 0.063 0.050 0.083 0.064
[22.80]∗∗ [4.42]∗∗ [1.88] [4.33]∗∗ [3.30]∗∗

Year dummies Included Implicit Included Included

CRS 0.00 0.34 0.65 0.15 0.00
AB Test AR(1) 0.00 0.00 0.00 0.00 0.00
AB Test AR(2) 0.00 0.00 0.02 0.18 0.19
CD Test 0.12 0.14 0.21 0.01 0.06
Order of integration I(1) I(1) I(0) I(0) I(0)
RMSE 0.278 0.163 0.064 0.059 0.059

Observations 2,637 2,637 2,518 2,637 2,637
Country-industries 119 119 119 119 119

Notes: POLS — Pooled OLS, 2FE — Two-way Fixed Effects, FD — OLS with variables in First
Differences, CCEP — Pooled Pesaran (2006) estimator. Absolute t-statistics in brackets, con-
structed from White heteroskedasticity-robust standard errors. ∗, ∗∗ indicate significance at the
5% and 1% level respectively.
Diagnostics: CRS: Wald test for H0 of constant returns to scale (labour, physical capital and
R&D capital; p-values reported). AB Test: Arellano and Bond (1992) test for H0 of no residual
serial correlation (p-values). CD Test: Pesaran (2004) test for H0 of cross-sectionally indepen-
dent residuals (p-values). The order of integration of the residuals is determined using the
Pesaran (2007) CIPS Test (full results available on request): I(0) – stationary, I(1) – nonsta-
tionary, I(1)/I(0) – ambiguous result.
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Table 6: Pooled Production Functions (dynamic)

POLS 2FE BB CCEP CCEP
[1] [2] [3] [4] [5]

PANEL A: LONG-RUN COEFFICIENTS (UNRESTRICTED MODELS)

Labour 0.338 -0.524 0.415 0.418
[2.48]∗ [0.80] [5.90]∗∗ [5.55]∗∗

Capital 0.173 0.894 0.404 0.370
[0.86] [1.86] [4.12]∗∗ [3.46]∗∗

R&D stock 0.462 0.309 0.037 0.032
[2.77]∗∗ [1.47] [0.95] [0.81]

PANEL B: LONG-RUN COEFFICIENTS (RESTRICTED MODELS)

Labour 0.657
[17.24]∗∗

Capital 0.086
[1.35]

R&D stock 0.024
[0.96]

Year dummies included implicit included included

COMFAC 0.00 0.73 0.03 0.01 0.02
CRS 0.60 0.56 0.36 0.14 0.10
CD Test 0.13 0.10 0.02 0.61 0.63
Sargan 0.00
Order of integration I(1)/I(0) I(0) I(1)/I(0) I(0) I(0)
RMSE 0.060 0.055 0.053 0.035 0.035

Observations 2,518 2,518 2,518 2,518 2,518
Country-industries 119 119 119 119 119

Notes: BB — Blundell-Bond (1998) System GMM estimator. See also Table 5 for details of tests
and other estimators. Absolute t-statistics in brackets, constructed from White heteroskedasticity-
robust standard errors. ∗, ∗∗ indicate significance at the 5% and 1% level respectively.
Diagnostics: COMFAC: p-values for H0 of valid common factor restrictions. All tests (except
CRS) are based on the unrestricted ARDL regression results (available on request). Panel A
reports unrestricted long-run coefficients, for which standard errors were computed using the
Delta method. Panel B imposes the common factor restrictions ex post (provided the COMFAC
test indicates the restriction is valid) based on a minimum distance procedure.
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Table 7: Heterogeneous production functions (static)

MG CDMG CMG CMG
[1] [2] [3] [4]

ln Li t 0.568 0.557 0.599 0.698
[6.57]∗∗ [7.63]∗∗ [9.00]∗∗ [8.24]∗∗

ln Ki t 0.117 0.445 0.244 0.149
[0.96] [5.01]∗∗ [1.70] [1.00]

ln Ri t -0.058 0.089 0.035 -0.050
[0.73] [2.12]∗ [0.44] [0.60]

trends included included

CRS 0.00 0.09 0.47 0.28
Ljung-Box AR 0.00 0.00 1.00 1.00
Order of integration I(1)/I(0) I(1)/I(0) I(0) I(1)/I(0)
CD Test 0.00 0.05 0.51 0.35
RMSE 0.051 0.068 0.037 0.035

Observations 2,637 2,637 2,637 2,637
Country-industries 119 119 119 119

Notes: Estimators: MG — Mean Group, CDMG — Cross-sectionally demeand MG, CMG —
Pesaran (2006) Common Correlated Effects MG. Absolute t-statistics in brackets, following
Pesaran and Smith (1995). ∗, ∗∗ indicate significance at the 5% and 1% level respectively. All
averages reported are unweighted means.
Diagnostics: Ljung-Box AR reports the p-values of Fisher statistics constructed from country-
industry specific Portmanteau (Q) tests of the residual series for the H0 of independently
distributed residuals/no serial correlation (joint test for up to 3 lags).
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Table 8: Heterogeneous production functions (dynamic)

MG CDMG CMG CMG
[1] [2] [3] [4]

LONG-RUN COEFFICIENTS (RESTRICTED MODELS)

Labour 0.703 0.567 0.642 0.678
[6.15]∗∗ [10.01]∗∗ [9.39]∗∗ [9.43]∗∗

Capital 0.277 0.245 0.276 0.172
[1.87] [3.37]∗∗ [1.70] [1.09]

R&D stock -0.107 0.139 -0.084 -0.088
[0.95] [3.95]∗∗ [0.94] [0.96]

trends included included

COMFAC 0.72 0.48 0.96 0.85
CRS 0.09 0.19 0.00 0.00
Order of integration I(1)/I(0) I(1)/I(0) I(0) I(0)
CD Test 0.00 0.07 0.08 0.06
RMSE 0.035 0.038 0.022 0.021

Observations 2,518 2,518 2,096 2,096
Country-industries 119 119 84 84

Notes: See Tables 6 and 7 for details. Absolute t-statistics in brackets, following Pesaran and
Smith (1995). ∗, ∗∗ indicate significance at the 5% and 1% level respectively. All averages
reported are unweighted means. The common factor restrictions cannot be rejected in any of
the four models, we therefore only report the restricted model results (ARDL results available
on request). We dropped data from SWE, GER and PRT for the CMG models due to the
dimensionality problem (MG and CDMG estimates for smaller sample match those presented).
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APPENDIX

A Literature Overview

Table A-I provides an overview of the literature on returns to own R&D and R&D-related
spillovers based on the recent survey article on the measurement of returns to R&D by Hall et
al. (2009). The selection reported here, however, is much smaller because we focus on articles
that match our own approach as closely as possible. The selection criteria are as follows: (i)
country or country-industry as the unit of observation (i.e. no firm-level studies); (ii) produc-
tion function setup (as opposed to cost functions); (iii) samples of developed countries; (iv)
studies featuring an explicit own-R&D variable for the business sector (as opposed to specifi-
cations using total R&D or confounding own and others’ R&D); and (v) published after 1980.
Our selection includes some 30 articles of which the 19 studies deemed most relevant are
summarized in Table A-I. The full table including all studies as well as further information on
the specifics of the underlying production function, the estimators, alternative specifications,
additional variables and results is available from the authors upon request.

In Table A-I, we make a distinction between country-level and industry-level studies. The
latter are further divided into those analysing inter-industry spillovers, whereby the sample
may contain only one country (central part of the table), and articles with a particular —
albeit not exclusive — interest in international spillovers within the same industry. As shown in
the table, most studies first derive TFP indices from a standard growth accounting framework
and regress this TFP index on own R&D, the R&D spillover variable and sometimes a set
of control variables and dummies. When the R&D variables come as R&D capital stocks,
results are to be interpreted as elasticities and reported in column ‘Elasticity’. When R&D
variables are intensities (R&D/value-added), results are interpreted as gross returns (assuming
zero depreciation, see Hall et al., 2009) and are reported in column ‘Gross return’. Column
‘Modeling of Spillovers’ summarises the different weighting schemes employed to aggregate
R&D in other industries/countries into an R&D spillover variable. Studies can be broadly
divided into employing spillover measures aimed at uncovering rent spillovers or knowledge
spillovers. In the former case, input-output relations between industries and trade relations
between countries are used. In the latter case, preference is given to patent flows across
industries and countries and indicators of countries’ similarity in research field composition
among others. The spillover coefficients are reported in the final column.
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B Variable construction

B-1 Output — Value-added

We use value-added as a measure of industry output in order to achieve comparability with the
existing literature and because value-added is more closely related to profitability than sales.
EU KLEMS reports both gross output and intermediate inputs in current prices. We therefore
construct double-deflated value-added by subtracting real inputs from real output. This prac-
tice is preferable over using single-deflated value-added, i.e., deflated nominal value-added, as
a measure for output, since it avoids the situation where differential price movements across
countries generate the false impression of productivity changes. EU KLEMS also provides
the necessary industry-level deflators which is a distinct advantage of this data as for some
industries, expectations of price changes would likely be different to the general level of in-
flation. This is an important issue because if inadequate deflators are used, industry output
may appear to grow slower. Since this is most likely in industries that are R&D-intensive, the
contribution of R&D to output growth would be underestimated (Hall, 1996).28

To account for the ‘expensing bias’ discussed in Section 2 of the main text, we adjust
intermediate inputs for R&D-related expenses. We use OECD data to construct the share
of intermediate R&D inputs in total R&D expenditure to adjust the conventional measure
of intermediate inputs. We then use this adjusted intermediate input measure to construct
our double-deflated measure of value-added. In an alternative specification we include the
measure for R&D intensity directly in our regression model. The sample for the Schankerman-
adjustments (we only discuss the coverage for the final regression sample which is diminished
primarily by the lack of industry-level data on R&D workers) covers 97 country-industries in
9 countries (SWE is missing, USA only has 5 observations in one industry) between 1987 and
2005 (with 1988, 1992, 1994, 1996 further missing) and has a total of 725 observations, thus
less than 30% of the full sample analysed in the main section of the paper.

B-2 Labour input

As a measure of labour input, EU KLEMS provides the total number of hours worked by per-
sons engaged. The availability of such information is an advantage of EU KLEMS over other
datasets as usually the number of full-time equivalent employees has to serve as a proxy for
labour input, possibly aggravating the problem of measurement error (see for example Hall
and Mairesse, 1996; Wakelin, 2001).

In order to correct for ‘double counting’ of R&D in our measure of labour input as suggested
by Schankerman (1981), we construct the ratio of R&D labour input and traditional labour.
The data come from EUKLEMS and the OECD.

B-3 Capital input

Ideally, a measure of current capital services instead of capital stocks, i.e., a flow measure
instead of a stock measure, should be used in productivity analysis (Jorgenson and Griliches,
1967).29 The EU KLEMS dataset provides such a measure for capital services in index form.
However, since we do not have any data on R&D capital services, we prefer to use physical
capital stocks as a proxy for capital services.30 This is acceptable under the assumption that the
quantity of an asset held by an industry is proportional to the quantity of the corresponding
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service obtained from that asset. For this to be the case, the aggregate of an industry’s capital
holdings should represent an average over the various different vintages and age groups of
the capital employed within the industry. That this assumption may approximately hold in
practice is supported by empirical work, for example, by Wallis and Turvey (2009) for the UK.

Capital input is measured as total tangible assets by book value recorded annually. EU
KLEMS provides several measures for tangible assets including total tangible assets, gross
fixed capital formation (GFCF), ICT assets, and non-ICT assets. We use total tangible assets
and deflate them using a industry-level producer price index.

We create a measure for the ratio of physical capital devoted to R&D and total physical
capital to correct for ‘double-counting’ of R&D (Schankerman, 1981). The measure is con-
structed as the share of R&D spending on capital in total R&D spending where the data come
from the OECD.

B-4 R&D expenditure and stocks

We use R&D stocks in our analysis. It is well known that R&D takes time to translate into
innovation and it is therefore the ensemble of past and current R&D expenditures that should
matter for productivity rather than merely current expenditure. At the same time past knowl-
edge also depreciates, hence, simply specifying lagged levels of R&D expenditure to account for
the dynamic nature of R&D may be misleading. The combination of knowledge accumulation
and depreciation is also the underlying rationale for Equation (2) in the Griliches knowledge
production framework: the notion that more recent vintages of R&D investment matter more
for the knowledge stock than older ones is captured by the log polynomial specification.

EU KLEMS provides R&D stocks for 19 countries for the period 1980-2003. However, the
overlap with the available tangible capital stock data is not perfect leaving us with 9 countries
for which both R&D stocks and physical capital data are available. In order to increase the
number of countries in the sample, we constructed R&D capital stocks for Portugal for which
R&D data is readily available. These R&D stocks were computed using the OECD Analytical
Business Enterprise Research & Development (ANBERD) data (update May 2009) which only
accounts for business enterprise R&D.31 EU KLEMS also uses ANBERD to construct R&D stocks
and we followed their methodology for Portugal applying the perpetual inventory method
(PIM):

Ri t = (1−δ)Ri t−1+R&Di t (19)

where R&D denotes real R&D flows and R the corresponding stock. In order to implement
equation (19), δ has to be determined. In line with EU KLEMS, we assume a depreciation
rate of 12% (Hall and Mairesse, 1995; Hall, 2007). The depreciation rate is assumed to be
the same across industries and constant over time: as noted by Hall and Mairesse (1995), the
actual rate chosen seems to be of little relevance for estimation. The reason is the same that
also justifies the use of the following formula to compute the initial capital stock

Ri1 = R&Di0+ (1−δ) R&Di−1+ (1−δ)2 R&Di−2+ ...

=
∞
∑

t=0

(1−δ)t R&Di−s = R&Di0

∞
∑

t=0

�

1−δ
1+ gi

�t

=
R&Di0

δ+ gi

(20)

where gi denotes the industry-specific growth rate of R&D capital stock. Contrary to other
authors, such as Hall and Mairesse (1995), we do not assume a value for gi but compute it

33



using the first seven years for which R&D expenditure is observed. As long as the growth rate
and the depreciation rate do not change dramatically within industries over time, they will
be captured by industry-specific effects in any regression. Hence, the elasticity of output with
respect to R does not depend on the choice of δ.

In addition to constructing R&D capital stocks for Portugal, we extended the R&D stocks
computed by EU KLEMS for all other countries to cover 2004 and 2005 as well, using ANBERD
data and PIM described above. We used GDP deflators as proxies for R&D-specific deflators
to obtain real R&D expenditures prior to computing the stock variables. We acknowledge a
potential measurement problem arising from this choice (see Edworthy and Wallis, 2007) but
at present no viable alternative data are available.

Despite efforts undertaken by the OECD to produce internationally comparable R&D data,
important differences across countries in their attribution of R&D across industries remain,
including data collection, changes in classification and annual data coverage (OECD, 2009).
For our data, the problem in international comparability arises from the fact that countries do
not report R&D data uniformly by product field but some rather by main activity. Countries
also differ in their treatment of R&D conducted in the ‘R&D services’ industrial sector ISIC 73.
Our set of countries contains countries that follow either the product field or main activity
approach: Denmark, Germany, Italy, Japan, Netherlands, Portugal and the US follow the main
activity approach, whereas Finland, Sweden, and the UK follow the product field approach.
This difference in the allocation of R&D spending across industries still contaminates cross-
country comparability of R&D expenditures and stocks.32
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TECHNICAL APPENDIX

TA-1 Variable Properties

Table TA-1: Time-Series Properties

PANEL A: VARIABLES IN LEVELS

Maddala and Wu (1999) Fisher Test
Constant Constant and Trend

lags ln Yi t ln Li t ln Ki t ln Ri t lags ln Yi t ln Li t ln Ki t ln Ri t

0 377.10 (.00) 195.89 (.98) 475.55 (.00) 821.56 (.00) 0 237.33 (.50) 165.30 (1.00) 218.26 (.82) 113.11 (1.00)
1 387.37 (.00) 318.94 (.00) 353.65 (.00) 376.22 (.00) 1 448.85 (.00) 405.17 (.00) 381.98 (.00) 585.53 (.00)
2 329.96 (.00) 184.69 (1.00) 277.02 (.04) 373.42 (.00) 2 337.86 (.00) 233.73 (.57) 254.39 (.22) 210.84 (.90)
3 292.94 (.01) 211.53 (.89) 329.64 (.00) 361.32 (.00) 3 272.38 (.06) 280.36 (.03) 481.75 (.00) 429.02 (.00)

Pesaran (2007) CIPS Test
Constant Constant and Trend

lags ln Yi t ln Li t ln Ki t ln Ri t lags ln Yi t ln Li t ln Ki t ln Ri t

0 2.33 (0.99) 3.46 (1.00) 8.01 (1.00) 9.45 (1.00) 0 1.11 (0.87) 3.45 (1.00) 8.01 (1.00) 10.26 (1.00)
1 2.50 (0.99) -0.24 (0.41) 8.43 (1.00) 7.13 (1.00) 1 -3.30 (.00) -1.60 (0.06) -2.62 (.00) 0.57 (.72)
2 10.36 (1.00) 8.39 (1.00) 10.27 (1.00) 14.58 (1.00) 2 8.47 (1.00) 9.88 (1.00) 6.98 (1.00) 9.52 (1.00)
3 15.22 (1.00) 12.55 (1.00) 11.63 (1.00) 16.51 (1.00) 3 18.73 (1.00) 17.61 (1.00) 14.65 (1.00) 17.53 (1.00)

PANEL B: VARIABLES IN FIRST DIFFERENCE (WITH DRIFT)
Maddala and Wu (1999) Fisher Test Pesaran (2007) CIPS Test

lags ln Yi t ln Li t ln Ki t ln Ri t lags ln Yi t ln Li t ln Ki t ln Ri t

0 1674.68 (.00) 1140.05 (.00) 579.39 (.00) 395.02 (.00) 0 -22.96 (.00) -16.84 (.00) -10.22 (.00) -3.25 (.00)
1 1245.59 (.00) 879.13 (.00) 460.91 (.00) 537.31 (.00) 1 -14.83 (.00) -11.54 (.00) -5.27 (.00) -6.37 (.00)
2 750.23 (.00) 469.34 (.00) 386.03 (.00) 308.01 (.00) 2 -2.19 (.01) 2.16 (.98) 1.66 (.95) 3.79 (1.00)
3 460.06 (.00) 422.29 (.00) 582.17 (.00) 356.46 (.00) 3 12.23 (1.00) 13.42 (1.00) 14.64 (1.00) 10.56 (1.00)

Notes: For the Maddala and Wu (1999) test we report the Fisher statistic and associated p-value, for the Pesaran (2007) test the
standardised Z-tbar statistic and its p-value. The null hypothesis for both tests is that all series are nonstationary. Lags indicates the lag
augmentation in the Dickey Fuller regression employed. In Panel A we augment the Dickey Fuller regression for variables in levels with a
constant or a constant and trend; in Panel B for the variables in first differences we only employ a drift (constant). We used Stata
routines xtfisher and pescadf written by Scott Merryman and Piotr Lewandowski respectively.

Table TA-2: Cross-Section Correlation

PANEL A: LEVELS PANEL B: FIRST DIFFERENCES

ln Yi t ln Li t ln Ki t ln Ri t ∆ln Yi t ∆ln Li t ∆ln Ki t ∆ln Ri t

avg ρ 0.29 0.30 0.55 0.40 avg ρ 0.17 0.17 0.20 0.03
avg |ρ| 0.59 0.57 0.77 0.78 avg |ρ| 0.26 0.28 0.34 0.34
CD 110.44 105.45 199.00 149.64 CD 58.78 59.08 68.53 12.50
p-value 0.00 0.00 0.00 0.00 p-value 0.00 0.00 0.00 0.00

PANEL C: POOLED AR(2) PANEL D: COUNTRY-INDUSTRY AR(2)
ln Yi t ln Li t ln Ki t ln Ri t ln Yi t ln Li t ln Ki t ln Ri t

avg ρ 0.00 0.00 0.00 0.02 avg ρ 0.13 0.12 0.09 0.02
avg |ρ| 0.23 0.26 0.24 0.25 avg |ρ| 0.25 0.25 0.25 0.23
CD -0.55 -1.42 -1.03 7.05 CD 45.46 42.20 33.78 8.44
p-value 0.58 0.16 0.30 0.00 p-value 0.00 0.00 0.00 0.00

Notes: We present the average and average absolute correlation coefficients across the N(N − 1) sets of correlations. CD reports the
Pesaran (2004) cross-section dependence statistic, which is distributed N(0, 1) under the null of cross-section independence. Panels A
and B test the variable series in levels and first differences respectively. In Panel C each of the four variables in levels is entered into a
pooled panel regression zi t = π0,i +π1zi,t−1 +π2zi,t−2 +πt + εi t where πt indicates T − 1 year dummies and π0,i N country-industry
fixed effects. In Panel D each of the four variables in levels is entered into a time-series regression
zi t = π0,i +π1,izi,t−1 +π2,izi,t−2 +π3,i t + εi t , conducted separately for each country-industry i. The correlations and cross-section
dependence statistic in Panels C and D are then based on the residuals from these AR regressions. We used the Stata routine xtcd
written by Markus Eberhardt.
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TA-2 Schankerman (1981) Correction/Augmentation

We carry out variable adjustments to account for excess return bias due to double-counting
(DC) and model augmentation to account for expensing bias (EB), following Schankerman
(1981). Since our data coverage for s (share of R&D workers in total workforce), δ (share
of R&D investment in total investment) and θ (R&D intensity) is relatively limited (we lose
over 70% of observations) we are unable to estimate dynamic model specifications and limit
our analysis to static models. Furthermore, the augmentations with cross-section averages
in the (standard, augmented) CCEP estimators necessitate a sample reduction such that the
number of country-industries would drop to a mere 33 (n = 395 observations). In addition,
these estimators rely on the time-series dimension of the panel to estimate the country-specific
coefficients on the cross-section averages and therefore cannot be expected to perform well in
the resulting sample setup where T ranges from 8 to 13. We therefore drop these estimators
from this robustness exercise.

We present results for a Griliches knowledge production function where input variables
are adjusted for observed values of s & δ and with observed θ included as additional regressor.
Alternatively, we use unadjusted input variables and add s, δ, and θ to the standard Griliches
knowledge production function to account for the omitted variable bias. We also experimented
with adjusting value-added directly by correcting the intermediate input measure for R&D
expensing. Results showed very similar patterns to those presented in Table TA-3, Panel A,
and are therefore not presented here.

The results for the pooled models where k and l are adjusted and R&D intensity is added as
covariate (Table TA-3, Panel A) largely follow the direction of the bias suggested by Schanker-
man (1981): in all but the POLS models correcting for double-counting raises the coefficient
on R&D capital. Further, adjusting for expensing can be seen to have an ambiguous effect
across empirical models. When we instead add measures for s and δ to the regression equa-
tion with unadjusted k and l (same Table, Panel B) the coefficient on R&D capital hardly
moves at all and the tests for the constraints linking the coefficients (see Schankerman (1981)
footnote 4) reject in all models.

We further experimented with some data imputations, replacing missing observations with
country-industry time-series averages (this yielded n = 2,292 observations), but these results
proved not to be particularly insightful, following the patterns described in the smaller sample
for observed data only.

In conclusion, given all the data constraints experienced we can merely highlight the
seemingly limited change in the R&D coefficients once we adjust for expensing and double-
counting. From an econometric perspective we believe there are good grounds to suggest that
other data properties, first and foremost nonstationarity and cross-section dependence, play
an important role in this type of data and that the empirical bias derived by Schankerman
(1981) in a cross-section regression of firm-level data may be conflated with a failure to ad-
dress these more salient macro panel data issues in the present case. For the empirical models
which explicitly account for cross-section dependence there is furthermore a theoretical argu-
ment that they can address the double-counting and expensing problem (see Section 3.2.2 in
the main text).
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Table TA-3: Schankerman Correction/Augmentation — Pooled Models

PANEL A: ADJUSTMENT using observed data for s, δ and θ

POLS 2FE FDOLS
[1] [2] [3] [4] [5] [6] [7] [8] [9]

ln Ri t 0.135 0.132 0.138 0.121 0.163 0.162 -0.005 0.041 0.043
[14.19]** [13.26]** [13.77]** [1.29] [1.57] [1.53] [0.09] [0.59] [0.61]

Correction DC DC, EB DC DC, EB DC DC, EB
Year dummies included included included included included included included included included
Observations 725 725 725 725 725 725 306 306 306
Aveage T 7.3 7.3 7.3 7.3 7.3 7.3 3.1 3.1 3.1

PANEL B: AUGMENTATION using observed data for s, δ and θ

POLS 2FE FDOLS
[1] [2] [3] [4] [5] [6] [7] [8] [9]

ln Ri t 0.135 0.127 0.131 0.121 0.101 0.099 -0.005 -0.007 -0.005
[14.19]** [12.90]** [13.35]** [1.29] [1.09] [1.07] [0.09] [0.11] [0.08]

Augmentation DC DC, EB DC DC, EB DC DC, EB
Year dummies included included included included included included included included included
Observations 725 725 725 725 725 725 306 306 306
Aveage T 7.5 7.5 7.5 7.5 7.5 7.5 3.2 3.2 3.2
Restricton F-test (s,δ) 5.37 4.45 22.16 22.24 7.13 7.13
p-value 0.005 0.012 0.000 0.000 0.001 0.001

Notes: DC — double-counting (correct variable for/augment model with s, δ), EB — expensing bias (augment model with θ). Year
dummies included in all models. Constraint refers to an F -test linking coefficients on s and δ to those on ln L and ln K respectively. See
text above for more details on these exercises. ∗, ∗∗ indicate statistical significance at the 5% and 1% level respectively. N = 99
country-industries in all regressions.
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