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Abstract

The recent blossoming of panel econometrics in general and panel time-series meth-
ods in particular has enabled many more research questions to be investigated than
before. However, this development has not assuaged serious concerns over the lack
of diagnostic testing procedures in panel econometrics, in particular vis-à-vis the
prominence of such practices in the time-series domain: the recent introduction of
residual cross-section independence tests aside, within mainstream panel empirics
the combination of ‘model’, ‘specification’ and ‘testing’ typically refers to the dis-
tinction between fixed and random effects, as opposed to a rigorous investigation
of residual properties. In this paper we investigate these issues in the context of
non-stationary panels with multifactor error structure, employing Monte Carlo sim-
ulations to investigate the distributions and rejection frequencies for standard time-
series diagnostic procedures, including tests for residual autocorrelation, ARCH,
normality, heteroskedasticity and functional form.
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I Introduction

The blossoming of panel estimation methods in recent years has enabled many more research
questions to be investigated than before, but it has not assuaged the concerns of a small subset
of econometricians who might be better known as “Worriers”. By Worriers, we mean those who
pay close attention to the underlying assumption empirical modelling is usually dependent on,
namely independent, identically and Normally distributed error terms. Such Worriers would
suggest an empirical model should be checked to ensure that, beyond reasonable doubt, the
residuals satisfy this assumption. In their mind the failure to confirm ‘well-behaved’ error terms
implies that all the inferential and diagnostic statistics as well as the point estimates calculated
for the model are based on invalid assumptions and hence at best difficult to trust and at worst
entirely misleading and wrong. By and large, panel estimation is a misspecification-test-free
zone, exemplified by the result of a Google search for “panel” and “misspecification”, which
returns links to papers proposing methods to robustify estimators against misspecification (e.g.
Harris et al., 2009), as opposed to developing further tests for exactly this misspecification. The
former approach is unlikely to work in a range of general circumstances as we show below.

It can safely be said that this emphasis on testing and model specification, although very
common in time-series econometrics (Hendry, 1995), never made the transition into a cross-
section concept. After all, in cross-section estimation, a moderate R2 statistic is usually about
all that can be hoped for: there is simply too much ‘going on’ in a cross section of the population
for us to hope we can adequately explain all the observed variation. The development of panel
estimation can, for the most part, be described as collections of cross-section data over time
periods, as opposed to collections of time-series data, and as such issues central to time-series
estimation such as the investigation of model misspecification have not been duly emphasised.
We have in mind particularly panels of data where both the N and T dimensions are large
and issues relating to misspecification are therefore potentially of great importance. We may
describe, in particular, the sorts of panels we are interested in as macro-panels of data. With
the emergence of panel estimators which can relax the assumption of parameter homogeneity
(e.g. Bai & Ng, 2002; Pesaran, 2006; Bai, 2009) and with the help of a common factor structure
allow for unobserved heterogeneity, the lack of residual diagnostics in macro panel econometrics
now more than ever represents a glaring omission.

Of course, panels are vastly complicated beasts and tend to resist any easy and simple investi-
gation. Any panel test quickly runs into difficulties: what should the asymptotic critical values
be? How should information in different time-series in a panel (or multiple cross-sections) be
cumulated to provide a single statistic that provides judgement on the entire panel? What
can we say about the combination of tests for joint testing for a range of misspecifications? It
is unrealistic to hope that in a single study we could provide answers to all of these difficult
questions. Nevertheless, by using the tool of Monte Carlo simulations we make a start and
investigate modifications of various time-series diagnostic tests in a panel context, in particular
to examine their properties and usefulness in detecting the consequences of misspecification.
We are interested both in the properties of the estimators commonly used and in the tests
for misspecification that arise from the use of these estimators. We analyze the behaviour
and properties of the estimators and test statistics under a series of increasingly general spec-
ifications of the data generating process (DGP). As a result, our paper deals not only with
specification tests but also with the fundamental and substantive issue of the efficiency of var-
ious estimation methods and why simply relying upon the coefficient of multiple correlation
or robust standard errors understates the severity of the problems likely to be encountered in
macro-panel estimation.
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This paper proceeds as follows: in Section II we motivate our study of misspecification tests
using an empirical example, before we introduce misspecification testing as is standard in the
time-series econometric literature in Section III, and extend this into the panel context in
Section IV. Section V describes our simulation design with the results reported in Section VI.
Section VII concludes. A description of the dataset for the empirical example as well as some
details of the misspecification tests used are contained in the appendices.

II Panel time-series Estimation in Practice

While the econometric literature on macro panel data with a common factor structure has
made great strides over the past decade (Bai & Ng, 2002, 2004; Pesaran, 2006; Bai, 2009;
Kapetanios et al., 2010; Sarafidis & Wansbeek, 2010) there is still relatively limited applied work
employing these new methods to data. Some of the few examples for the latter include sectoral
production functions analysis of Italian regions (Costantini & Destefanis, 2009), an analysis of
the natural resource curse (Cavalcanti et al., 2009), cross-country analysis of aggregate economy
development (Pedroni, 2007) and cross-country investigation of agricultural and manufacturing
production (Eberhardt & Teal, 2010b,c). As was pointed out in Bai (2009), the adoption of a
common factor model is ideally suited for the analysis of cross-country growth and development
in a standard Cobb-Douglas production function. Let:

ln Yit = βLi ln Lit + βKi ln Kit + uit, uit = β0i + γ ′iFt + εit, (1a)

ln Kit = µ0i + λ′1iFt + λ′2iGt + εit, (1b)

where Yit, Lit and Kit are GDP, labour force and capital stock in country or region i at time t
and βKi and βKi represent the output elasticities with respect to capital and labour respectively.
The unobservable element of production (Total Factor Productivity, TFP) is modelled as a
linear combination of a country-specific level (fixed effect, β0i) and a set of unobserved common
factors Ft with country-specific factor loadings γ ′i. Since these common factors can represent
linear, non-linear, stationary or nonstationary processes, as well as ‘strong’ and ‘weak’ factors
(see Chudik et al., 2010), this setup translates into a highly flexible way of modelling country-
specific TFP evolution over time whilst at the same time accounting for the possibility of
common shocks and local spillover effects. As indicated in equation (1b) we can allow for
(some of) the same unobserved factors Ft to influence the evolution of capital stock K, thus
making this variable endogenous in the production equation (similarly for labour).

The empirical setup developed here thus allows for a macro production function process with
heterogeneous technology across countries (βLi , βKi ), with observable and unobservable processes
that are potentially integrated, for endogeneity of observable factors of production and for cross-
section correlation in the variables and unobservables across countries. All of these features
can be motivated from economic or econometric theory and from empirical experience. For
instance, the ‘new growth theory’ following Azariadis & Drazen (1990) developed models which
lead to multiple equilibria interpretable as differential production technology across countries
(see also Murphy et al., 1989; Durlauf, 1993; Banerjee & Newman, 1993). Similarly, the order
of integration of highly persistent macro series such as GDP or capital stock is a long-running
concern in macroeconomics (Nelson & Plosser, 1982; Granger, 1997; Lee et al., 1997; Rapach,
2002), while the assumption of non-stationarity for the unobservable drivers of output (TFP)
is also a common feature of this literature (Palm & Pfann, 1995; Bernard & Jones, 1996; Kao
et al., 1999; Bond et al., 2010). Cross-section dependence, on the other hand, is a fairly recent
addition to the panel time-series literature and can be argued to arise from globally common
shocks, such as the recent financial crisis or the impact of China’s economic awakening, and/or
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the presence of local productivity spillovers. The Regional Science literature has pursued the
quantification of local spillovers using spatial econometric tools (e.g. Conley & Ligon, 2002;
Ertur & Koch, 2007) and a number of similar attempts exist in the applied economics literatures
on spillovers from FDI or R&D (e.g. Coe & Helpman, 1995; Verspagen, 1997; Griffith et al.,
2004). All of these approaches to capture spillovers however require the econometrician to
impose some structure on the spillover channels based on ad-hoc assumptions — most simply
that productivity spillovers only take place between contiguous neighbours. In contrast to
these simplifications the common factor approach is entirely agnostic about the structure of
the spillover channels and can accommodate both the presence of local spillovers and globally
common shocks.1

Having argued, we hope convincingly, in favour of the suitability of the emerging panel time-
series models for cross-country empirical analysis at some length we now want to motivate the
focus of this study on panel regression diagnostics, notably the dearth of panel-specific tools
to investigate the behaviour of regression residuals. We illustrate this by presenting regression
results for cross-country production functions of the Cobb-Douglas form (N = 55 countries,
T = 57 year, balanced panel) for homogeneous and heterogeneous parameter models (Tables
1 and 2 respectively). The data are taken from the Penn World Table (PWT), version 6.3
(Heston et al., 2009), arguably the most popular dataset for cross-country empirical analysis.2

Capital stock is constructed from data on the investment share of GDP using the Perpetual
Inventory Method (PIM). ‘Labour’ represents the population headcount. All monetary values
are in year 2000 International $ PPP. A list of the developing and developed countries in our
sample as well as descriptive statistics are provided in the Appendix.3 Instead of estimating
the above model we transform the dependent variable into GDP per capita and regress this
on the per capita stock and the labour variable (all in logarithms): this enables us to read
off the deviation from constant returns to scale from the coefficient on labour (Panel A) and
allows for convenient imposition of constant returns (Panel B). We consider both pooled and
heterogeneous models for the production function and report the results in Table 1 for the
pooled specification and in Table 2 when heterogeneity is allowed.

Focusing first on the parameter estimates exclusively, we can see that in the pooled specification
the two-way fixed effect (2FE) and the first difference (FD) estimators strongly reject constant
returns to scale in favour of decreasing returns. Output elasticities with respect to capital stock
are around .6 to .8, roughly twice the magnitude we would expect from the analysis of income
share data (Mankiw et al., 1992, p.415).4 In the heterogeneous models constant returns can
on average not be rejected in all four models. Once we impose CRS the capital coefficients
are close to .7 in all models. In each case we can observe that the random coefficient models
(RCM) yield very similar results to the mean group estimates, indicating that the averages are
not distorted by outliers.

For all specifications we carry out a number of residual diagnostic tests, focusing on the standard
concerns of serial correlation, heteroskedasticity, normality and functional form. We present the
test statistics for various tests under each rubric available in the Stata software package while

1For a more detailed discussion of these modelling features refer to Eberhardt & Teal (2010a) and Eberhardt
et al. (2010).

2For illustrative purposes, PWT version 6.1, released in 2002 has around 1,500 Google Scholar citations, 6.2
(2006) more than 900 and 6.3 around 150 (2009).

3The present empirical analysis is for illustrative purposes, such that we are not concerning ourselves with
the sample selection issues inherent in our regression: we focus on countries with a full time-series for all three
regression variables. For a discussion of issues related to sample selection in panel time-series refer to Smith &
Tasiran (2010).

4Data from the Federal Reserve Bank of Cleveland, for instance, shows an average labour share of 71.7% of
value-added from 1970 to 2002 for the United States (Gomme & Rupert, 2004).
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Panel (A): unrestricted model Panel (B): CRS imposed
[1] [2] [3] [4] [5] [6] [7] [8]

Dep. variable Per capita GDP (in logs) ∆lny Per capita GDP (in logs) ∆lny
Estimator POLS 2FE CCEP FD POLS 2FE CCEP FD

log Labour 0.002 -0.186 -0.023 -0.163
[0.63] [3.15]∗∗∗ [0.05] [2.27]∗∗∗

log Capital pw 0.682 0.782 0.592 0.658 0.682 0.821 0.654 0.676
[165.14]∗∗∗ [13.28]∗∗∗ [4.34]∗∗∗ [21.98]∗∗∗ [177.82]∗∗∗ [13.44]∗∗∗ [5.30]∗∗∗ [23.34]∗∗∗

Constant 2.041 4.119 0.000 2.074 0.823 0.000
[26.42]∗∗∗ [3.75]∗∗∗ [0.92] [42.44]∗∗∗ [1.51] [0.66]

Obs 3,135 3,135 3,135 3,080 3,135 3,135 3,135 3,080
R-squared 0.96 0.93 0.97 0.22 0.96 0.92 0.96 0.22

serial correlation
AB #(1) N(0, 1) 28.12 19.93 15.20 4.25 28.18 19.92 17.99 4.43
AB #(2) N(0, 1) 27.68 18.88 12.72 0.72 ] 27.75 18.88 16.25 0.87 ]
Wooldridge F (1, 54) 183.1 161.4 186.3 180.4

heteroskedasticity
BP χ2(1) 721.63 592.97 853.27 290.79 711.52 564.37 807.56 253.28
BP F (1, 3133) 599.76 194.66 186.22 80.29 593.67 184.81 230.49 69.47
White χ2(173) 874.05 486.22 750.75 383.78

normality
CT Skewness χ2(58) 109.05 60.86 ] 73.65 60.72 ]
CT Kurtosis χ2(1) 52.06 24.72 50.93 24.26
DBD χ2(2) 45.62 44.74

RESET
F (3, 3073) 254.53 13.54 31.72 31.72 251.05 25.78 28.70 5.17

integration
êit I(1)] I(1)] I(0) I(0) I(1)] I(1)] I(0) I(0)

cross-section dependence
CD (p) -1.88 (.06)] -3.31 (.00) -2.66 (.01) -3.31 (.00) -1.90 (.06)] -3.00 (.00) -2.88 (.00) -3.30 (.00)

Notes: N = 55 countries, T = 57years — balanced panel. Data source: PWT.
Estimators: POLS — pooled OLS (augmented with T − 1 year dummies; 2FE — 2-way Fixed Effects; CCEP — Pesaran (2006) Common
Correlated Effects estimator, pooled version; FD-OLS — pooled OLS with variables and year dummies in first difference.
Diagnostics: AB — Arellano & Bond (1991) serial correlation test (short T panel test), H0 no AR(#); Wooldridge — Wooldridge (2002) serial
correlation test (short T panel test), H0 no AR(#); BP — Breusch & Pagan (1979) test for heteroskedasticity, H0 Constant variance; CT —
Cameron & Trivedi (1990) skewness and kurtosis tests, H0 no skewness/kurtosis; DBD — D’Agostino et al. (1990) normality test, H0 normal
residuals. RESET — (Ramsey, 1969) RESET test for functional form, H0 linear specification. Integration — we employ the (Pesaran, 2007)
panel unit root test to the residuals and report our conclusion following tests with various lags: I(1) integrated of order 1, I(0) stationary. CD —
(Pesaran, 2004) CD test, H0 cross-section independence. With the exception of those marked with ] all test statistics reject the null.

Table 1: Production function regressions (pooled models)

noting that most of these tests derive from the time-series literature and their computation
within the context of panel regressions is highly unusual and deserves further investigation.
Furthermore, some of the diagnostic tests, such as the Arellano & Bond (1991) and Wooldridge
(2002) serial correlation tests, were developed for short-T panels and their performance in
(non-stationary) long-T panels is unknown. In the heterogeneous parameter models we take
recourse to the Fisher (1932) statistic, which allows us to aggregate the information from
N country-specific tests into a single panel statistic. In both the pooled and heterogeneous
parameter models the vast majority of test statistics reject the null — note that for convenience
of presentation we highlight those models and test statistics where the null is not rejected. From
this we can conclude that each model considered is misspecified. We also carried out tests for
residual stationarity and cross-section independence, employing the (Pesaran, 2007) CIPS panel
unit root test and the (Pesaran, 2004) CD test.

In the pooled models the former indicates integrated residuals for the POLS and 2FE models,
whereas in the heterogeneous models all residual series are found to be stationary. With excep-
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Panel (A): unrestricted model Panel (B): CRS imposed
[1] [2] [3] [4] [5] [6] [7] [8]

MG RCM CMG C-RCM MG RCM CMG C-RCM

log Labour 0.072 0.201 -0.334 -0.281
[0.23] [0.63] [1.05] [0.86]

log Capital pw 0.604 0.595 0.562 0.573 0.678 0.674 0.714 0.713
[9.77]∗∗∗ [9.25]∗∗∗ [8.85]∗∗∗ [8.62]∗∗∗ [10.53]∗∗∗ [10.20]∗∗∗ [8.70]∗∗∗ [8.53]∗∗∗

Country trend 0.008 0.005 0.005 0.005
[1.09] [0.65] [3.70]∗∗∗ [3.30]∗∗∗

Constant 1.277 -0.754 0.913 1.018 2.076 2.099 -0.311 -0.168
[0.27] [0.15] [0.29] [0.32] [4.05]∗∗∗ [3.96]∗∗∗ [0.61] [0.33]

Obs 3,135 3,135 3,135 3,135 3,135 3,135 3,135 3,135
Countries 55 55 55 55 55 55 55 55

serial correlation
Fisher Durbin (1) 3664.7 2495.8 4002.6 3919.0
Fisher Durbin (2) 3712.2 2591.6 4016.2 3763.9
Fisher BG (1) 2108.6 1532.1 2344.5 2081.6
Fisher BG (2) 1955.0 1436.9 2164.2 1921.7

heteroskedasticity
Fisher BP 361.5 442.3 441.7 363.5
Fisher White 621.4 440.5 747.1 174.1

Normality
Fisher CT Skewness 336.1 246.1 406.0 377.7
Fisher CT Kurtosis 186.6 143.7 177.6 610.3

Ramsey RESET
Fisher 2245.4 1276.7 2245.4 1682.7

integration
êit I(0) I(0) I(0) I(0)

cross-section dependence
CD (p) 25.73 (.00) -2.11 (.04) 36.00 (.00) -2.48 (.01)

Notes: N = 55 countries, T = 57, balanced panel. Data source: PWT.
Estimators: MG — Pesaran & Smith (1995) mean group (augmented with trend); RCM — Swamy (1970) Random Coefficient Model (with
trend); CMG — Pesaran (2006) Common Correlated Effects estimator, MG version; C-RCM — Swamy (1970) Random Coefficient Model
augmented with Cross-Section Averages.
Diagnostics: As above, except for Durbin — Durbin’s alternative test for serial correlation; BG — Breusch (1979)-Godfrey (1978) test for
higher-order serial correlation. All statistics presented in the diagnostics are (Fisher, 1932) statistics (

P
i logpi) where pi is the p-value for the

country-specific diagnostic test. Under the respective null the Fisher statistics is distributed χ2(2N). All test statistics reject the null.
Additional Estimators: We also ran the Pedroni (2000) Group-Mean FMOLS estimator which yielded similar estimates to those above — trend

.008 (t = 1.23), β̂L .045 (t = 0.17), β̂K .587 (t = 10.52) and for the CRS model trend .006 (t = 4.70), β̂K .645 (t = 9.93).

Table 2: Production function regressions (heterogeneous models)

tion of POLS all models reject cross-section independence in the residual series. Our empirical
illustration thus raises a number of serious questions: firstly, whether the various tests employed
are appropriate for the panel context (i.e. what is their size and power), and secondly, whether
any conclusions about the underlying misspecification can be drawn from the patterns in the
diagnostic test results. Our study aims to address both of these matters, taking within its
scope a range of issues relating to cross-section dependence, stationarity properties of the data,
specification of the models and the estimation methods adopted. All of these aspects are seen
to be important in the results below.
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III Misspecification in time-series

When an econometric (time-series) model such as

yt = β0 + β1xt + εt, εt ∼ iidN
(
0, σ2

)
, (2)

is specified a large number of either explicit or implicit assumptions are made. The funda-
mental assumption is that of identically independently Normally distributed error terms. All
statistics calculated from (2), including estimators for the coefficients β0 and β1, are based on
this assumption; if the assumption fails to hold, then none of the statistics computed can be
trusted.

It is useful to note before proceeding further that the results we describe in the sections which
follow apply equally well to scenarios where the models under investigation are much more
complex, for example, by containing more regressors. Our focus therefore is not on the number
of regressors in the model but much more importantly on the properties of a panel with a
relatively simple regressor structure but with complicated specifications of the DGP, for example
its time series properties and dependence across the units of the panel.

Testing in time-series models has developed to the extent that something of a consensus has
emerged over the key tests to be carried out and passed before a model can be described as
“well-specified” (Bera & Jarque, 1982; Davidson & MacKinnon, 1985; Hendry, 1995). Tests
for autocorrelation in model residuals (independence assumption), autoregressive conditional
heteroskedasticity (identicalness assumption), heteroskedasticity (identicalness again) and Nor-
mality have established themselves as the standard tests to be carried out. A further test often
reported in statistical packages is the Ramsey (1969) RESET test, although this is usually
downplayed in importance because any model misspecification will likely become apparent
through one of the other tests carried out. We highlight briefly each of theses tests within
the time series framework and then proceed to proposing their macro-panel equivalents in the
following section.

Autocorrelated residuals fail the ‘independence’ part of the iid assumption: the residuals are not
independent of each other over time. The consequence, from standard econometric theory, is
that the resulting estimator will be biased and inconsistent, with the direction dependent on the
sign of the autocorrelation.5 The mainstream panel econometric literature in addition assumes
cross-section independence, that is, the absence of common shocks or externalities/spillover
effects across panel members. Although tackling correlation in a spatial dimension without a
natural ordering (such as in the temporal dimension)6 raises considerable difficulties the recent
macro panel literature has studied this assumption and its violation very closely (for recent
surveys see Coakley et al., 2006; Moscone & Tosetti, 2009; Sarafidis & Wansbeek, 2010).

The standard autocorrelation test (employed for example in OxMetrics (Doornik, 2007)) is the
Breusch (1979) and Godfrey (1978) test for autocorrelation.

Heteroskedasticity describes the situation where the identicalness part of the assumption on
the error terms fails, and in particular when their variance is changing over a sample. Hence
the error distribution in (2) is N (0, σ2

t ). Naturally this variation over the sample could take
many forms; observations after some structural break may have greater variance, observations
in a particular period (e.g. a financial crisis) may have greater variance.

5Due to this bias one must retain scepticism about asymptotic standard error correction methods commonly
employed in applied studies (see Newey & West, 1987).

6With time-related correlation, it is the natural ordering over time that allows for a solution to the problem
via sequential factorisation.
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Heteroskedasticity causes inefficiency of OLS estimates due to the failure of the Gauss-Markov
condition but does not lead to bias or inconsistency in estimators. Despite its benign conse-
quences in terms of consistency, heteroskedasticity is a sign of misspecification as systematic
information is still found in the residuals. In time-series applications the most commonly used
heteroskedasticity test appears to be the White (1980) test.

A particular form of heteroskedasticity that has developed into a separate testing procedure
and its very own research field is autoregressive conditional heteroskedasticity (ARCH), where
the error variance has an autoregressive structure (Engle, 1982). This characteristic of data
series is most commonly but not exclusively associated with financial data and was most no-
tably exemplified by Milton Friedman’s assertion that inflation is more volatile when it is high
(Friedman, 1977). The simple regression test of ARCH was proposed by Engle (1982).

Testing the Normality assumption of the errors directly via their empirical counterpart is an-
other part of the standard testing battery. This test calculates the empirical skewness and
excess kurtosis of the residual distribution (Jarque & Bera, 1987; Doornik & Hansen, 2008). It
is very easy to think of non-normality being an issue, particularly within the datasets typically
used and the structural shocks that they might contain. This translates to the importance of
outliers, and consequently testing for non-normality and non-linearity.

The final test is the so-called RESET test of functional form; this test considers whether the
assumed functional form is correct and adds the squares (and possibly cubes) of the fitted
values to check for this (Ramsey, 1969).

The essence of these misspecification tests (or ‘checks’ as they are described within the Au-
tometrics procedure (Doornik, 2009)) is that if they all pass (do not fail) to the usual degree
of statistical certainty, then the econometrician can conclude that the residuals in her regres-
sion model satisfy the assumptions placed upon them, and hence can treat resulting regression
output with a degree of confidence. Naturally, this is a restrictive approach: even allowing
for statistical uncertainty the application of various testing procedures will not necessarily un-
cover all forms of misspecification in the residual series and it is furthermore often asserted
that repeated hypothesis testing is highly likely to produce erroneous outcomes (for this reason
we test in this paper at a 1% significance level for all our tests). Nevertheless we argue that
misspecification testing is important within both the panel and time-series estimation contexts
in order to put more faith in the results of tests for significance or of (individual or joint)
restrictions, in the consistency properties of the estimators, and hence finally in the outcomes
and conclusions from hypothesis testing.

IV Misspecification in Panel Applications

Extending the time-series convention for misspecification testing into the panel context is nat-
urally a complicated task. The misspecifications mentioned above in the time-series context
naturally occur in panel models.

The range of misspecifications is clearly vast and in this paper we simply make a start by
extending the above-mentioned time-series variants of the misspecifications; more detailed in-
vestigations of variations of these misspecifications are topics of our on-going research.

In this section we introduce panel models and estimation methods and discuss misspecification
testing in these contexts. Although many of these methods are well known, we mention these
here briefly for the sake of completeness. In the panel context, the most basic econometric
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model is:

yit = β0 + β1x1,it + εit, iidN
(
0, σ2

)
. (3)

where t = 1, . . . , T indicates the time-series dimension and i = 1, . . . , N the cross-section
dimension. If each time-series is drawn from the same data generating process (DGP), then
the assumption in (3) of a constant parameterisation across panel members (β0, β1), henceforth
parameter homogeneity) is appropriate. Estimating (3) simply using OLS is known as pooled
estimation.

Alternatively the intercept estimate β0 may differ between cross-section units:

yit = β0i + β1x1,it + εit, εit ∼ iidN
(
0, σ2

)
. (4)

Two estimation approaches are common here: fixed effects and random effects. Fixed effects
estimation assumes that the differences between cross-section units can be captured by using
dummy variables; an equivalent model to (4) is thus

yit = Niβ0 + β1x1,it + εit, (5)

where Ni is a N×N matrix of dummy variables for each cross section unit such that Nj = 1j=i,
and β0 is an N × 1 vector of coefficients.7 Due to this representation, this method is often
referred to as Least Squares Dummy Variables (LSDV) estimation. The dummies here could
be either for the cross-section units, or for each time period. Two-way fixed effects estimation
includes both types of dummies. This would also include a T × (T − 1) matrix of dummies Nt,
such that Ns = 1s=t, where only T − 1 dummies are included to avoid perfect multicolinearity
given that N dummies are already entered for the cross-section units. The resulting model
is:

yit = Niβ0 + β1x1,it +Ntβ2 + εit. (6)

The alternative, random effects estimation method treats the difference between the cross-
section units as being drawn from a random distribution, such that the error term can be
viewed as a composite term: εit = νi + ηit. νi is the cross-section variation and is assumed
to be distributed N (0, σ2

ν). Estimation of random effects models usually proceeds using trans-
formations to get rid of the νi term. We employ one such specification: the first differences
transformation. Thus according to the specification for the error term, (3) becomes:

yit = β0 + β1x1,it + νi + ηit, iidN
(
0, σ2

)
. (7)

Hence if we take first differences of (7) then the νi term cancels out to yield:

∆yit = β1∆x1,it + ∆ηit. (8)

The mean group (MG) estimation procedure following Pesaran & Smith (1995) allows all coeffi-
cients to vary over cross-section units (henceforth: parameter heterogeneity) and estimates each
time-series individually, calculating panel statistics by taking averages or alternative means of
aggregation. We simply consider here the situation where the reported coefficient is the average
of the individual coefficients, hence we run the following regressions:

y1t = β10 + β11x1,1t + ε1t, ε1t ∼ N
(
0, σ2

1

)
, (9a)

y2t = β20 + β21x1,2t + ε2t, ε1t ∼ N
(
0, σ2

2

)
, (9b)

...
...

...
... (9c)

yNt = βN0 + βN1x1,Nt + εNt, ε1t ∼ N
(
0, σ2

N

)
. (9d)

7The constant is omitted to avoid perfect multicolinearity.
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The mean group regression coefficients are thus β0 = N−1
∑N

i=1 βi0 and β1 = N−1
∑N

i=1 β1i.

mean group estimation is effective in the situation where parameter heterogeneity exists, such
that the true underlying model is:

yit = β0i + β1ix1,it + εit, iidN
(
0, σ2

)
. (10)

Cross-section dependence is a practical difficulty arising in panel data: some countries or firms or
regions will be more closely related, and hence dependent on each other, than others; similarly,
the heterogeneous impact of globally common shocks (e.g. the recent financial crisis) creates
dependence in the variable series across countries, firms or regions. Such possibilities are
usually represented econometrically using factor structures. For example, we might define yit
to depend on xit but also on an unobserved common factor Ft which varies over time but not
over cross-section units, although its impact is allowed to vary over units via heterogeneous
‘factor loadings’:

yit = β0i + β1ix1,it + γiFt + εit, iidN
(
0, σ2

)
. (11)

This type of heterogeneity differs from that introduced above since it occurs among unob-
servable elements of the DGP. Among alternative methods in the literature to cope with the
factor structure of cross-section dependence introduced in (11) Pesaran (2006) has suggested
the Common Correlated Effects (CCE) estimators, which are favourable due to their ease of im-
plementation: we simply need to add cross-section averages of the dependent and independent
variables as additional regressors to the standard MG regression model. Let

yt =
N∑
i=1

yit, xt =
N∑
i=1

xit. (12)

If we take cross-section averages of (11) we get:

1

N

N∑
i=1

yit = β0i + β1i
1

N

N∑
i=1

x1,it + γiFt +
1

N

N∑
i=1

εit. (13)

Rearranging (13) for Ft, inserting into (11) and collecting terms yields the CCE-MG model:

yit = β0i + β1ixit + β2iyt + β3ixt + εit. (14)

More recent work (Chudik et al., 2010; Kapetanios et al., 2010; Pesaran & Tosetti, 2010)
has shown that adding cross-section averages as additional regressors in this fashion allows
for identification of β1i in the presence of a finite number of common factors which have an
impact on all panel members (‘strong factors’), an infinity of common factors which mimic local
spillover effects (‘weak factors’) and regardless of whether the common factors are integrated
or not. A number of alternative estimators dealing with a multi-factor error structure exist in
the literature (Coakley et al., 2002; Bai & Kao, 2006; Bai, 2009), all of which rely on the Bai
& Ng (2002) methodology to identify the number of ‘relevant’ factors in the data. Recent work
on cross-section dependence has noted that these methods are unable to distinguish between
weak and strong factors (Chudik et al., 2010; Sarafidis & Wansbeek, 2010) and we therefore
focus our attention on the CCE estimator.

The final simulation setup considered below in the following section, Case G, introduces a form
of endogeneity in the DGP (simultaneity between y and x) which none of the above estimators
is equipped to tackle. We therefore also consider an instrumental variable version of the
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CCE estimator (CCE-LIV) which uses xi,t−1 as instruments for xit ∀ i. Thus in comparison
to the standard CCE country regression in equation (14) we obtain the following estimation
equation

yit = β0i + β1ix̂it + β2iyt + β3ix̂t + εit. (15)

for i = 1, . . . , N and t = 2, . . . , T , where x̂it are the predicted values from the first stage
regression. Results are available upon request from the authors.

All the misspecificiation tests introduced in Section III are residual-based tests and hence can
be applied to each panel estimation method mentioned in this Section by taking the residuals in
each case and calculating the test statistic with the appropriate corrections for varying sample
sizes and numbers of explanatory variables.

The only complications are introduced by the mean group (MG) or common correlated effects
(CCE) estimators, where information from individual time-series estimations is combined to
construct a panel statistic. Borrowing from the panel unit-root testing literature, there appear
to be two methods for aggregating test statistics calculated on individual time-series regressions:
taking averages or calculating Fisher (1932) statistics. A version of a central limit theorem
delivers normality for the average of a number of non-independent, standardised identically
distributed random statistics, while the Fisher statistic has a well-known limiting distribution.
The two panel test statistics (averages, Fisher statistic) can be described as:

1

N

N∑
i=1

Zi −→ N (E (Zi) ,Var (Zi)) , (16)

−2
N∑
i=1

log(pi) −→ χ2
2N , (17)

where Zi is the test statistic for time-series i and pi is the p-value for the particular test in time-
series i. An issue of concern here is whether we can expect central limiting arguments to ‘work’,
either by concentrating out the cross-section independence caused by the factors or by using
more sophisticated version of CLTs for dependent sequences (see Hoeffding & Robbins (1948)
for a limit theorem for m-dependent series of identically distributed random variables). From a
theoretical viewpoint the answer should surely be in the affirmative, but in empirical practice,
particularly for the dimensions of N and T considered here this turns out not to be true in
some instances. This may be because the augmentations do not capture the factor dependence
adequately or the convergence of the densities to normality is still slow for the specific N and
T dimensions considered. More detailed investigation is necessary but left for future research.
Existing work by Gengenbach et al. (2009) and Pesaran (2007) has further highlighted the
possibility to work with truncated statistics (both for the mean group and Fisher forms of the
tests) so that extreme values are not included in the calculation of the average. Considering
the effects of such truncation on the properties of the tests is also the topic of further work by
us.

It should be noted that misspecification adds an additional layer to the problems in that the
wrong estimation method applied in a particular context also leads to misspecification; for
instance, it is almost certainly the case that using POLS when the DGP has a factor structure
as in (11) will induce many of the standard, time-series misspecification tests we consider in
this paper to fail. Hence in our simulation study we consider a range of estimation methods to
investigate precisely this question: what happens when the wrong estimation method is chosen?
A possible application of these tests is to help the practitioner detect whether they have applied
an overly restrictive estimation method.
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In the next Section we introduce the design of the simulation experiments carried out in this
paper; our aim is to study the properties of estimators and misspecification tests in the context
of misspecification, and to that effect we consider a range of different DGPs from a very simple
set-up akin to (3) through to cross-section dependence of varying degrees of complexity. We
are guided in this by the empirical example discussed in Section II.

V Simulation Design

In this paper we conduct a number of experiments in order to assess misspecification testing
in the panel context. We consider nine cases in total: following a stationary scenario with a
standard normal regressor we introduce non-stationarity in the regressor and thus cointegration.
Stationary and nonstationary common factors lead to a number of alternative cases for two-way
and three-way cointegration, before we introduce regressor endogeneity and finally simultaneity
to the setup. In all cases we refer to homogeneity or heterogeneity with respect to the cross-
section dimension. We now introduce each of the cases in turn:

(A) Homogeneous Standard Normal Benchmark: Our initial simulation results are
based on the following specification:

yit = β0 + β1x1,it + εit, εit ∼ N
(
0, σ2

)
. (18)

We specify that σ2 = 1, β0 = 0, and β1 = 10/
√
T . This setup ensures that the true

t-statistic for the constant is zero (hence insignificant) and that for x1,it is 10; this method
for controlling true t-statistics in simulations is taken from Hendry & Krolzig (2003). All
simulations have dimensions N = 30 and T = 100, and hence β1 = 1, which is in line
with many other simulation designs, notably Coakley et al. (2006) and Kapetanios et al.
(2010). In this first setup we assume that xit ∼ N (0, 1).

This simple structure is designed as a starting point and we do not believe it is in any
way realistic. Our aim is to establish how the misspecification tests perform in the best of
possible scenarios.

The remaining cases are best discussed by introducing a more general structure:

yit = β0i + β1ixit + γiFt + (τit + εit), εit ∼ N
(
0, σ2

ε

)
, (19a)

xit = µ0i + µ1ixi,t−1 + λ1iFt + λ2iGt + θiτit + uit, uit ∼ N
(
0, σ2

u

)
, (19b)

Ft = α1Ft−1 + ωt, ωt ∼ N
(
0, σ2

ω

)
. (19c)

Gt = α2Gt−1 + ηt, ηt ∼ N
(
0, σ2

η

)
. (19d)

All the errors are assumed to be mutually independent; we set σ2
ε = σ2

u = σ2
ω = σ2

η = 1. Note
that we keep µ0i = 0 across all cases — the introduction of a drift to the integrated regressor
is known not to affect the outcomes studied in this framework (Bond & Eberhardt, 2009).
The assumptions made on the various parameters introduced in (19a)–(19d) distinguish the
remaining cases. They are as follows:

(B) Homogeneous Cointegration: We specify that our x-variable is non-stationary, hence
that µ0i = 0 and µ1i = 1. We further maintain parameter homogeneity for slopes and
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intercept and rule out any factor structure in x or y or feedback between the two equations:

β0i = β0 = 0, (20a)

β1i = β1 = 10/
√
T , (20b)

γi = λ1i = λ2i = 0, (20c)

τit = θi = 0. (20d)

This setup implies homogeneous cointegration between y and x without any further noise
from factors or heterogeneous intercepts.

(C) Heterogeneous Cointegration: Next, we introduce parameter heterogeneity, while
keeping xit non-stationary (µ1i = 1) and still ruling out any factor structure. Hence we
retain (20c), but in place of (20a) and (20b) we specify the following:

β0i ∼ U [−0.5, 0.5], (21a)

β1i = 10/
√
T + νβ1,i, νβ1,i ∼ U [−0.5, 0.5]. (21b)

This setup implies heterogeneous cointegration between y and x with the fixed effects β0i

acting as nuisance parameters.

(D) Heterogeneous Cointegration with Common Factors: We next introduce a fac-
tor structure for yit, thus γi 6= 0, and assume heterogeneous factor loadings:

γi ∼ U [0.5, 1.5]. (22)

x remains non-stationary as before (via µ1i = 1). Two scenarios are investigated:

(i) Assuming a stationary factor structure for y, we set α1 = 5/
√
T < 1, provided

T > 25, which is always the case in our simulations. This case implies that y and x
are non-stationary and cointegrated, with the stationary factor Ft acting as noise.

(ii) Assuming a non-stationary factor structure for y, we set α1 = 1. This is equivalent
to a three-way heterogeneous cointegrating relation between y, x and the common
factor F .

(E) Heterogeneous Cointegration with Common Factors (Alternative): This
setup is very similar to the previous one, but we set x to be non-stationary via a common
factor rather than by setting µ1i = 1: the factor loadings λ2i 6= 0 and are determined
according to:

λ2i ∼ U [0.5, 1.5]. (23)

The common factor Gt is specified as non-stationary by setting α2 = 1. Thus both y and
x are driven by separate I(1) factors. Again we investigate two scenarios:

(i) For a stationary factor structure for y, we set α1 = 5/
√
T < 1 (provided T > 25,

which is always the case). This implies heterogeneous cointegration between y and x
with additional noise from the stationary factor F .

(ii) For a non-stationary factor structure for y, we set α1 = 1. This is again equivalent
to a three-way heterogeneous cointegrating relation between y, x and the common
factor F .
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(F) Heterogeneous Cointegration with Factor Overlap: This case allows for factor
overlap, the situation where both y and x depend on the same factor, Ft from (19c), but
with differential factor loadings. Hence now λ1i 6= 0 and is determined according to

λ1i ∼ U [0.5, 1.5]. (24)

In addition x is still a function of the non-stationary factor Gt with heterogeneous factor
loadings as previously described. This setup again implies three-way cointegration but
adds an endogeneity problem, whereby the observable regressor x is correlated with the
unobservable determinant of y, namely (γiFt + εit), leading to an identification problem
for β1i.

(G) Heterogeneous Cointegration with Factor Overlap & Simultaneity: Our
final case adds simultaneity into the system by letting τit 6= 0 and θi 6= 0. We specify:

τit ∼ N (0, 1) , θi = θ + υi, υ ∼ U [−0.5, 0.5], (25)

where θ = 10/
√
T . Thus in addition to the three-way heterogeneous cointegration between

y, x and F there is now a feedback relationship between y and x which implies that these
two variables are jointly determined.

For each of the DGP specifications A–G above, we first analyse the nominal size of the tests for
misspecification in the absence of any of the prescribed misspecifications. This is subject to the
caveat that depending on the DGP many of the estimation methods will be misspecified (e.g.
pooled OLS for cases C onwards). Therefore distortions of size in the misspecification tests can
occur even though the residuals are correctly specified. This is due to the biases induced by
inappropriate estimation methods. Next we alter the DGP so that one of the misspecifications
does pertain in the data. We generate the misspecification in the exact form that each test
specifies, and then consider the size and power properties of each misspecification test. A
second layer of misspecification in addition to the estimation method is thus considered. In
more detail, we alter the DGP for the five misspecifications as follows:

(1) Autocorrelation We specify that the residuals εit are generated by:

εit = ρ1εi,t−1 + ζit, ζit ∼ N (0, 1) , (26)

where ρ1 = 0.8.

(2) ARCH We specify that the error variance for εit is autoregressive, so:

σ2
t = φ0 + φ1σ

2
t−1 + ξt, ξt ∼ N (0, 1) , (27)

where φ1 = 0.8.

(3) Heteroskedasticity We specify that the error variance for εit depends on the regressors
xit and their squares x2

it, hence:

σ2 = ψ1xit + ψ2x
2
it, (28)

where ψ1 = ψ2 = 1.

(4) Normality We specify that the error term follows a t-distribution with 3 degrees of
freedom (chosen such that the distribution has at least two moments):

εit ∼ t3. (29)
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(5) RESET We introduce a functional form misspecification by adding the square of xit to the
DGP, hence:

yit = β0i + β1ixit + β2ix
2
it + γiFt + εit, (30)

where β2i = β1i.

It would be possible, at the expense of vastly multiplying the number of tables, to introduce
more than one misspecification at a time. We do not, however, expect to obtain qualitatively
different results in such cases and are also able to control for each form of misspecification.

Hence for each of the cases (A)–(G), we run six different DGPs: A well-specified DGP as well as
five DGPs incorporating one of the misspecifications described respectively.8 The well-specified
DGP allows us to investigate the size of the misspecification tests (to see whether they adventi-
tiously reject the prescribed 1% of times dictated by using 1% significance level critical values),
while specifying DGPs for each misspecification separately allows us to consider the power of
each test to detect that particular misspecification, but also the size of the other tests when this
particular misspecification is present. This last issue relates to the independence of misspecifi-
cation tests; it is generally known even in the time-series context that tests are not independent
of each other (Bera & Jarque, 1982). We feel that our choice of a 1% significance level for all
tests will mitigate the lack of independence between test statistics to some extent.

Each case and misspecification DGP is iterated M = 1, 000 times and we furthermore allow for
a burn-in period of t = 50 periods.

VI Simulation Results

We present the results from our simulations in a number of stages. First we consider the
distributions of the estimators of β0 and β1 for each estimation method, alongside the distri-
butions of the standard errors of these estimators. Then we consider the size statistics of the
misspecifications tests discussed in Section IV before continuing to investigate the power of
these tests when the estimated model is misspecified. As a concise reminder of the different
cases considered we provide a brief recap in the following:

(A) Homogeneous Standard Normal Benchmark.

(B) Homogeneous Cointegration.

(C) Heterogeneous Cointegration.

(D) Heterogeneous Cointegration with Common Factors.
(i) I(0) factor driving y.
(ii) I(1) factor driving y.

(E) Heterogeneous Cointegration with Common Factors (Alternative).
(i) Factor structure for x and an I(0) factor driving y.
(ii) Factor structure for x and an I(1) factor driving y.

(F) Heterogeneous Cointegration with Factor Overlap.

(G) Cointegration with Factor Overlap & Simultaneity.

8We limit our analysis here to allowing for the presence of one misspecification at a time. The issues raised
by multiple misspecifications are left for future research.
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Aside from the above-mentioned estimators9 we also employ an ‘infeasible’ mean group esti-
mator (iMG) where (for Cases D onwards) the unobserved common factors are included in the
regression equation.

VI.1 Estimation and Inference

Figures 1–9 contain the distributions of estimators for β1 from the various estimation methods
in the different cases of the benchmark setup without any misspecification added to the DGP. In
each case incorporating heterogeneity (from Case C) the ‘infeasible MG’ estimator (constructed
by including the unobservable common factors) represents a suitable benchmark against which
to judge the alternative estimators. The salient aspect of these Figures is that as the DGP
becomes more complex, the distributions separate much more, thus enabling some conclusions
to be made between estimation methods. Like other recent simulation studies (e.g. Coakley
et al., 2006; Kapetanios et al., 2010), we find that the CCE estimator outperforms alternative
implementations for the slope coefficient estimate once we introduce parameter heterogeneity
and common factors (stationary or non-stationary) — in many cases the distribution for this
model’s estimators is indistinguishable from the infeasible estimator. Note that the intercept
estimates in the CCE case are no longer comparable to those from other models. The reason for
this is that β0i is not identified in the CCE setup, since we instead obtain (in our DGP notation)
β0i − γiγ̄

−1β̄0, where the second term is due to the augmentation attempting to address the
presence of the common factor Ft. For this reason we focus on presenting our results only for
the slope coefficients.

POLS 
1WFE 
2WFE 
FD 
MG 
CCE 
iMG 

0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08

10

20

β̂1 density

POLS 
1WFE 
2WFE 
FD 
MG 
CCE 
iMG 

Figure 1: Estimator distributions for Case A; see footnote 9 for explanation
of estimator acronyms.

Case A (Figure 1) is primarily of interest for the misspecifications tests; as we can see all
estimators are unbiased and with the exception of the FD estimator (loss of levels information)
all are similarly efficient. In Case B (Figure 2) we observe the super consistency of POLS over
all other estimators in its higher precision. Cases C and D (Figures 3–5), where parameter
heterogeneity is introduced, illustrate the impact of this on estimator distributions, which are
generally much more spread now. Non-stationary residuals, like in the misspecified pooled
models in levels (POLS, 1FE and 2FE), lead to a substantial increase in the spread of the
estimates but do not result in bias — an analogue to the Phillips & Moon (1999) result in large
samples. The correctly specified MG estimator and its CCE cousin do not display the super

9POLS — pooled OLS, 1WFE — within/fixed-effects estimator, 2WFE — 2-way fixed effects estimator, FD
— first difference estimator, MG — mean group estimator, CCE — common correlated mean group estimator.
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Figure 2: Estimator distributions for Case B (adding non-stationary xit); see
footnote 9 for explanation of estimator acronyms.
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Figure 3: Estimator distributions for Case C (adding parameter hetero-
geneity for β0 and β1); see footnote 9 for explanation of estimator acronyms.
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Figure 4: Estimator distributions for Case D(i) (adding stationary factor
structure for yit); see footnote 9 for explanation of estimator acronyms.
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Figure 5: Estimator distributions for Case D(ii) (adding non-stationary
factor structure for yit); see footnote 9 for explanation of estimator acronyms.
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Figure 6: Estimator distributions for Case E(i) (adding stationary factor
structure for yit and non-stationary factor structure for xit); see footnote 9
for explanation of estimator acronyms.
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Figure 7: Estimator distributions for Case E(ii) (adding non-stationary factor
structure for yit and non-stationary factor structure for xit); see footnote 9
for explanation of estimator acronyms.

18



POLS 
1WFE 
2WFE 
FD 
MG 
CCE 
iMG 

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75

1

2

β̂1 density

POLS 
1WFE 
2WFE 
FD 
MG 
CCE 
iMG 

Figure 8: Estimator distributions for Case F (adding factor overlap); see
footnote 9 for explanation of estimator acronyms.
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Figure 9: Estimator distributions for Case G (adding feedbacks); see foot-
note 9 for explanation of estimator acronyms.

consistency property, a finding already pointed out with respect to the CCE in Kapetanios
et al. (2010).

Cases D and E (Figures 4–7) show that the mere presence of common factors (in x or y, sta-
tionary or non-stationary) does not lead to any serious additional problems for the misspecified
POLS and 2FE estimators: non-stationary common factors in y here merely add to the noise
in the already non-stationary residuals and thus the spread of POLS and 2FE estimates is in-
creased somewhat. When unobserved common factors in y are stationary, as in Cases D(i) and
E(i), we find virtually the same distributions as in Case C without common factors. The per-
formance of the MG estimator in Cases D(i) and D(ii) is somewhat surprising in continuing to
provide unbiased estimates, given that it does not account for the stationary or non-stationary
factors. However, once the non-stationarity of x is created via the factor structure in Case E(ii)
this increases the spread of the estimates considerably.

Case F (Figure 8) then leads to bias in all but the CCE estimators (which in our Figure has
an identical distribution to the iMG estimator), due to the identification problem for β1 if the
common factors in y are not accounted for — MG and 1FE are most severely affected. As was
found in previous studies (Coakley et al., 2006) the 2FE performs rather well and is subject
to comparatively limited bias — as ongoing work by the authors has established, this is most
likely an artefact of the simulation setup, in that the year dummies can account for the vast
majority of the (distorting) variation created by the factors in the present case. In empirical
practice — see for instance our cross-country production functions in Table 1 — this estimator
commonly performs rather poorly.
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(1) (2) (3) (1)/(2) (1) (2) (3) (1)/(2)

st.d. β̂1 Mean Median Ratio st.d. β̂1 Mean Median Ratio
ŝe
(
β̂1

)
ŝe
(
β̂1

)
ŝe
(
β̂1

)
ŝe
(
β̂1

)
Case A B
POLS 0.018 0.018 0.018 0.990 0.002 0.002 0.002 0.975
1WFE 0.018 0.018 0.018 0.988 0.005 0.005 0.005 1.017
2WFE 0.018 0.019 0.019 0.986 0.005 0.005 0.005 1.011
FD 0.022 0.018 0.018 1.219 0.026 0.026 0.026 0.984
MG 0.018 0.101 0.101 0.181 0.006 0.031 0.031 0.198
CCE 0.019 0.101 0.101 0.186 0.007 0.036 0.036 0.201
iMG 0.019 0.101 0.101 0.185 0.008 0.041 0.041 0.195
Case C D(i)
POLS 0.281 0.017 0.017 16.223 0.281 0.018 0.017 16.067
1WFE 0.245 0.018 0.018 13.608 0.237 0.019 0.019 12.611
2WFE 0.244 0.018 0.018 13.317 0.237 0.018 0.018 12.817
FD 0.187 0.032 0.031 5.920 0.187 0.039 0.039 4.854
MG 0.182 0.031 0.030 5.947 0.183 0.047 0.046 3.933
CCE 0.182 0.041 0.041 4.452 0.183 0.041 0.041 4.484
iMG 0.182 0.040 0.041 4.506 0.183 0.036 0.036 5.100
Case D(ii) E(i)
POLS 0.290 0.020 0.019 14.695 0.321 0.033 0.031 9.640
1WFE 0.272 0.026 0.024 10.505 0.218 0.019 0.019 11.225
2WFE 0.244 0.019 0.019 12.580 0.423 0.050 0.049 8.446
FD 0.190 0.037 0.037 5.134 0.199 0.026 0.026 7.559
MG 0.221 0.107 0.099 2.067 0.196 0.046 0.045 4.236
CCE 0.187 0.045 0.045 4.165 0.190 0.103 0.103 1.848
iMG 0.187 0.040 0.040 4.648 0.190 0.101 0.101 1.878
Case E(ii) F
POLS 0.510 0.040 0.038 12.898 0.398 0.037 0.033 10.889
1WFE 0.555 0.026 0.024 20.941 0.316 0.021 0.021 14.923
2WFE 0.419 0.052 0.051 8.029 0.445 0.056 0.056 7.949
FD 0.187 0.026 0.025 7.341 0.192 0.024 0.024 8.134
MG 0.611 0.109 0.093 5.603 0.305 0.058 0.052 5.304
CCE 0.177 0.103 0.103 1.725 0.182 0.102 0.102 1.780
iMG 0.177 0.101 0.101 1.752 0.182 0.101 0.101 1.800
Case G
POLS 0.364 0.037 0.033 9.842
1WFE 0.305 0.021 0.021 14.442
2WFE 0.366 0.051 0.050 7.138
FD 0.189 0.023 0.023 8.236
MG 0.301 0.056 0.050 5.414
CCE 0.182 0.091 0.091 1.996
iMG 0.182 0.089 0.089 2.035

Table 3: Standard Errors (empirical; estimated)

20



In Case G (Figure 9), with contemporaneous feedbacks between y and x, all estimators are
biased. Again the 2FE is centered closest to the true value of unity, although its spread is
considerably larger than that of the CCE estimator. As noted previously, this argues for the
use of a CCE-IV-based procedure, which is a subject of our ongoing research. Existing work
by Harding & Lamarche (2009) has also investigated the potential for instrumentation in the
present case of correlated error terms, albeit in a short-T context.

In Table 3 we present (1) the empirical standard errors (i.e. the standard deviation of β̂1 over
the M = 1, 000 iterations), the (2) Mean and (3) Median of the standard errors estimated
for each regressor, as well as (4) the ratio of (1) and (2). The latter is at times referred to
as an ‘overconfidence’ statistic: if this ratio is around unity the estimated standard errors
are in line with true efficiency of the estimator, whereas if the ratio is substantially above
unity then our estimator appears to be much more precise than it actually is, leading the
researcher to be much more confident about the point estimates than is merited. For Cases
A and B, where we have either a very well-behaved stationary setup with common slopes or
a cointegrating relation with common slopes, empirical and estimated standard errors for the
pooled models are perfectly aligned. The MG-type estimators result in much larger estimated
standard errors due to specifications which allow for potential heterogeneity that is absent,
leading to inefficiency.

Beginning from Case C, with heterogeneous cointegration, we can see that the pooled esti-
mators in levels yield much smaller standard errors than merited by their efficiency, due to
the misspecification of homogeneous slopes across i the residuals in this case are I(1). As Kao
(1999) pointed out the presence of non-stationary residuals invalidates any inferential statistics,
such as the t-statistic. In case of the 2FE estimator, for instance, the estimated standard errors
are between one eighth and one thirteenth of the empirical standard deviation of the estimates.
The same ‘overconfidence’ is present for the POLS and 1-way FE estimators, and to a lesser
extent for the FD estimator. Across all Cases the CCE estimator performs best in this regard,
with relatively limited distortion for the later Cases where factors drive both variables (E(i) to
G), with an overconfidence statistic of around 2.

VI.2 Misspecification Testing

VI.2.1 Size Properties

We now move on to discussing the size and power properties of misspecification testing follow-
ing estimation based on one of the six empirical estimators. Tables 4 to 12 contain rejection
frequencies for the five misspecification tests (AR, ARCH, normality, heteroskedasticity, RE-
SET) for each estimation method and case; as with the Figures above, each Table relates to a
particular case. These rejection frequencies are calculated for DGPs in which the null hypoth-
esis of well-behaved, iid Normal residuals is imposed, and hence they can be interpreted as the
empirical size (probability of false rejection) of each test. In order to keep down the overall
size of the misspecification testing procedure we selected a nominal size of 1% and hence we
expect that for a well-sized test the misspecification test in question fails around 1% of the
time. Within each Table each column relates to a particular form of misspecification that is
tested for, while each row relates to an estimation method (POLS, MG, CCE, etc), a test type
(F, LR or LM) and, where appropriate, a test construction method (average or Fisher). Note
that in order to reduce the number of tables when we come to discussing the power statistics,
for each of the nine cases we only report the results for the estimator which performs best in
terms of size (indicated in bold in the size tables).
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For the best-case scenario Case A (Table 4) we find the POLS estimator delivering almost
perfect size properties across all five tests, with the RESET LM test a rare deviation. This
aside the Fisher-type statistics for the MG estimator can also be regarded as well-sized. For
all other estimators (and the alternative averaged MG statistics) we detect primarily AR test
statistics that are oversized while in most cases the other tests are sized roughly appropriately
or mildly undersized. Exceptions include the FD estimator, where we conducted AR and ARCH
testing on residuals in first difference, such that we would expect these tests to reject because the
null is false; the normality and heteroskedasticity tests for some of the heterogenous estimators
are grossly oversized. The two averaging procedures for MG and CCE aside, it would seem that
the class of F statistics is most reliable across all estimators and misspecification tests.

AR ARCH Normal Hetero RESET

POLS (F) 0.013 0.010 0.013 0.009
POLS (LR) 0.013 0.010 0.014 0.009
POLS (LM) 0.014 0.010 0.008 0.013 0.004

1-way FE (F) 0.031 0.011 0.010 0.009
1-way FE (LR) 0.031 0.011 0.012 0.009
1-way FE (LM) 0.04 0.011 0.006 0.010 0.001

2-way FE (F) 0.035 0.012 0.015 0.005
2-way FE (LR) 0.035 0.012 0.022 0.008
2-way FE (LM) 0.046 0.012 0.012 0.014 0.001

First Diffs (F) 1.000 1.000 0.011 0.008
First Diffs (LR) 1.000 1.000 0.011 0.008
First Diffs (LM) 1.000 1.000 0.014 0.011 0.002

Mean Groups (F average) 0.036 0.045 0.071 0.047
Mean Groups (LR average) 0.026 0.014 0.043 0.033
Mean Groups (LM average) 0.008 0.033 1.000 0.909 0.425

Mean Groups (F fisher) 0.005 0.006 0.025 0.011
Mean Groups (LR fisher) 0.011 0.007 0.032 0.019
Mean Groups (LM fisher) 0.004 0.004 0.012 0.021 0.000

CCE (F average) 0.048 0.053 0.009 0.045
CCE (LR average) 0.033 0.017 0.992 0.047
CCE (LM average) 0.013 0.042 1.000 1.000 0.43

CCE (F fisher) 0.01 0.006 0.014 0.011
CCE (LR fisher) 0.02 0.008 0.035 0.028
CCE (LM fisher) 0.009 0.006 0.011 0.010 0.000

Table 4: Rejection frequencies (size) for misspecification tests: Case A.

Introducing non-stationarity and cointegration (Case B, Table 5), the picture painted for the
stationary Case A is virtually unchanged: individual size statistics are at times closer or further
away from nominal size, but with no clear pattern emerging. Curiously the heterogeneous
parameter estimators, which are inefficient given the homogeneous cointegration property in
this case, do not portray systematically worse size statistics than in the previous case.

Things change considerably once we introduce slope and intercept heterogeneity (Case C, Table
6): all pooled estimators are now misspecified, which is reflected in very poor size properties
across the board. POLS, 1- and 2-way FE and FD reject the null in virtually all versions and
tests 100% of the times. From the results for the FD estimators we can deduce that integrated
residuals are not the underlying source of this performance. Both the MG and CCE estimators
are well-specified in this case, but the former (especially in the Fisher variant) on balance still
performs better in terms of size.

The reasonable size properties of the Fisher-type MG and CCE-based tests in Case C deteriorate
when unobserved common factors in y are added to the setup (Cases D(i) and D(ii), Tables 7
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AR ARCH Normal Hetero RESET

POLS (F) 0.017 0.011 0.012 0.013
POLS (LR) 0.017 0.011 0.012 0.013
POLS (LM) 0.017 0.011 0.009 0.012 0.004

1-way FE (F) 0.030 0.009 0.005 0.015
1-way FE (LR) 0.030 0.009 0.005 0.015
1-way FE (LM) 0.031 0.009 0.008 0.005 0.000

2-way FE (F) 0.036 0.008 0.021 0.012
2-way FE (LR) 0.036 0.008 0.035 0.013
2-way FE (LM) 0.045 0.008 0.011 0.019 0.000

First Diffs (F) 1.000 1.000 0.012 0.005
First Diffs (LR) 1.000 1.000 0.012 0.005
First Diffs (LM) 1.000 1.000 0.010 0.012 0.002

Mean Groups (F average) 0.051 0.057 0.053 0.039
Mean Groups (LR average) 0.038 0.02 0.031 0.025
Mean Groups (LM average) 0.022 0.048 0.999 0.927 0.774

Mean Groups (F fisher) 0.012 0.008 0.010 0.009
Mean Groups (LR fisher) 0.028 0.013 0.021 0.018
Mean Groups (LM fisher) 0.010 0.007 0.008 0.009 0.000

CCE (F average) 0.098 0.053 0.011 0.048
CCE (LR average) 0.084 0.017 0.991 0.042
CCE (LM average) 0.047 0.091 1.000 1.000 0.856

CCE (F fisher) 0.029 0.008 0.008 0.009
CCE (LR fisher) 0.056 0.011 0.019 0.028
CCE (LM fisher) 0.027 0.005 0.009 0.008 0.000

Table 5: Rejection frequencies (size) for misspecification tests: Case B.

AR ARCH Normal Hetero RESET

POLS (F) 1.000 1.000 1.000 0.976
POLS (LR) 1.000 1.000 1.000 0.976
POLS (LM) 1.000 1.000 0.998 1.000 0.954

1-way FE (F) 1.000 1.000 1.000 0.999
1-way FE (LR) 1.000 1.000 1.000 0.999
1-way FE (LM) 1.000 1.000 1.000 1.000 0.983

2-way FE (F) 1.000 1.000 1.000 0.999
2-way FE (LR) 1.000 1.000 1.000 0.999
2-way FE (LM) 1.000 1.000 1.000 1.000 0.982

First Diffs (F) 1.000 0.999 1.000 0.148
First Diffs (LR) 1.000 0.999 1.000 0.149
First Diffs (LM) 1.000 0.999 0.803 1.000 0.066

Mean Groups (F average) 0.041 0.031 0.060 0.045
Mean Groups (LR average) 0.027 0.005 0.028 0.026
Mean Groups (LM average) 0.012 0.037 1.000 0.916 0.731

Mean Groups (F fisher) 0.012 0.003 0.016 0.007
Mean Groups (LR fisher) 0.021 0.003 0.021 0.017
Mean Groups (LM fisher) 0.011 0.002 0.011 0.015 0.000

CCE (F average) 0.096 0.034 0.009 0.061
CCE (LR average) 0.084 0.008 0.993 0.057
CCE (LM average) 0.044 0.089 1.000 1.000 0.868

CCE (F fisher) 0.035 0.002 0.012 0.015
CCE (LR fisher) 0.051 0.003 0.026 0.041
CCE (LM fisher) 0.029 0.002 0.017 0.011 0.000

Table 6: Rejection frequencies (size) for misspecification tests: Case C.
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AR ARCH Normal Hetero RESET

POLS (F) 1.000 1.000 1.000 0.972
POLS (LR) 1.000 1.000 1.000 0.972
POLS (LM) 1.000 1.000 0.996 1.000 0.958

1-way FE (F) 1.000 1.000 1.000 1.000
1-way FE (LR) 1.000 1.000 1.000 1.000
1-way FE (LM) 1.000 1.000 1.000 1.000 0.974

2-way FE (F) 1.000 1.000 1.000 1.000
2-way FE (LR) 1.000 1.000 1.000 1.000
2-way FE (LM) 1.000 1.000 1.000 1.000 0.977

First Diffs (F) 1.000 0.998 0.999 0.098
First Diffs (LR) 1.000 0.998 0.999 0.099
First Diffs (LM) 1.000 0.998 0.623 0.999 0.043

Mean Groups (F average) 0.989 0.323 0.162 0.728
Mean Groups (LR average) 0.989 0.298 0.132 0.719
Mean Groups (LM average) 0.987 0.989 0.999 0.932 0.191

Mean Groups (F fisher) 0.984 0.231 0.082 0.620
Mean Groups (LR fisher) 0.988 0.243 0.099 0.682
Mean Groups (LM fisher) 0.982 0.225 0.040 0.081 0.036

CCE (F average) 0.732 0.095 0.023 0.642
CCE (LR average) 0.725 0.056 0.995 0.650
CCE (LM average) 0.693 0.725 1.000 1.000 0.271

CCE (F fisher) 0.676 0.035 0.033 0.508
CCE (LR fisher) 0.708 0.041 0.053 0.611
CCE (LM fisher) 0.672 0.032 0.011 0.031 0.022

Table 7: Rejection frequencies (size) for misspecification tests: Case D(i).

AR ARCH Normal Hetero RESET

POLS (F) 1.000 1.000 0.999 0.977
POLS (LR) 1.000 1.000 0.999 0.977
POLS (LM) 1.000 1.000 0.973 0.999 0.941

1-way FE (F) 1.000 1.000 1.000 0.991
1-way FE (LR) 1.000 1.000 1.000 0.991
1-way FE (LM) 1.000 1.000 0.966 1.000 0.908

2-way FE (F) 1.000 1.000 1.000 0.991
2-way FE (LR) 1.000 1.000 1.000 0.991
2-way FE (LM) 1.000 1.000 1.000 1.000 0.943

First Diffs (F) 1.000 0.964 1.000 0.245
First Diffs (LR) 1.000 0.965 1.000 0.247
First Diffs (LM) 1.000 0.964 0.663 1.000 0.034

Mean Groups (F average) 1.000 1.000 0.982 1.000
Mean Groups (LR average) 1.000 1.000 0.979 1.000
Mean Groups (LM average) 1.000 1.000 1.000 1.000 0.999

Mean Groups (F fisher) 1.000 1.000 0.979 1.000
Mean Groups (LR fisher) 1.000 1.000 0.979 1.000
Mean Groups (LM fisher) 1.000 1.000 0.801 0.979 0.998

CCE (F average) 0.729 0.174 0.084 0.781
CCE (LR average) 0.725 0.151 0.999 0.799
CCE (LM average) 0.686 0.724 1.000 1.000 0.376

CCE (F fisher) 0.662 0.106 0.106 0.685
CCE (LR fisher) 0.696 0.113 0.142 0.758
CCE (LM fisher) 0.652 0.103 0.022 0.105 0.134

Table 8: Rejection frequencies (size) for misspecification tests: Case D(ii).
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AR ARCH Normal Hetero RESET

POLS (F) 1.000 1.000 1.000 0.697
POLS (LR) 1.000 1.000 1.000 0.697
POLS (LM) 1.000 1.000 0.984 1.000 0.563

1-way FE (F) 1.000 1.000 1.000 0.994
1-way FE (LR) 1.000 1.000 1.000 0.994
1-way FE (LM) 1.000 1.000 0.997 1.000 0.990

2-way FE (F) 1.000 1.000 1.000 0.995
2-way FE (LR) 1.000 1.000 1.000 0.995
2-way FE (LM) 1.000 1.000 0.996 1.000 0.984

First Diffs (F) 1.000 1.000 1.000 0.273
First Diffs (LR) 1.000 1.000 1.000 0.273
First Diffs (LM) 1.000 1.000 0.983 1.000 0.147

Mean Groups (F average) 0.986 0.329 0.212 0.476
Mean Groups (LR average) 0.984 0.296 0.145 0.410
Mean Groups (LM average) 0.982 0.985 1.000 0.846 0.631

Mean Groups (F fisher) 0.978 0.249 0.116 0.360
Mean Groups (LR fisher) 0.982 0.265 0.128 0.385
Mean Groups (LM fisher) 0.978 0.249 0.053 0.115 0.107

CCE (F average) 0.077 0.036 0.005 0.053
CCE (LR average) 0.061 0.015 0.995 0.046
CCE (LM average) 0.031 0.071 1.000 1.000 0.715

CCE (F fisher) 0.023 0.006 0.007 0.011
CCE (LR fisher) 0.035 0.007 0.019 0.027
CCE (LM fisher) 0.020 0.004 0.009 0.007 0.000

Table 9: Rejection frequencies (size) for misspecification tests: Case E(i).

AR ARCH Normal Hetero RESET

POLS (F) 1.000 1.000 0.998 0.847
POLS (LR) 1.000 1.000 0.998 0.847
POLS (LM) 1.000 1.000 0.943 0.998 0.668

1-way FE (F) 1.000 1.000 1.000 0.990
1-way FE (LR) 1.000 1.000 1.000 0.990
1-way FE (LM) 1.000 1.000 0.948 1.000 0.907

2-way FE (F) 1.000 1.000 1.000 0.988
2-way FE (LR) 1.000 1.000 1.000 0.990
2-way FE (LM) 1.000 1.000 0.991 1.000 0.944

First Diffs (F) 1.000 1.000 1.000 0.377
First Diffs (LR) 1.000 1.000 1.000 0.377
First Diffs (LM) 1.000 1.000 0.996 1.000 0.161

Mean Groups (F average) 1.000 1.000 0.835 0.837
Mean Groups (LR average) 1.000 1.000 0.799 0.778
Mean Groups (LM average) 1.000 1.000 0.983 0.950 0.799

Mean Groups (F fisher) 1.000 1.000 0.782 0.755
Mean Groups (LR fisher) 1.000 1.000 0.793 0.765
Mean Groups (LM fisher) 1.000 1.000 0.612 0.785 0.550

CCE (F average) 0.094 0.043 0.006 0.040
CCE (LR average) 0.078 0.013 0.995 0.035
CCE (LM average) 0.043 0.085 1.000 1.000 0.838

CCE (F fisher) 0.024 0.003 0.011 0.013
CCE (LR fisher) 0.052 0.003 0.028 0.026
CCE (LM fisher) 0.021 0.003 0.008 0.010 0.000

Table 10: Rejection frequencies (size) for misspecification tests: Case E(ii).
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AR ARCH Normal Hetero RESET

POLS (F) 1.000 1.000 1.000 0.827
POLS (LR) 1.000 1.000 1.000 0.828
POLS (LM) 1.000 1.000 0.972 1.000 0.696

1-way FE (F) 1.000 1.000 1.000 0.996
1-way FE (LR) 1.000 1.000 1.000 0.996
1-way FE (LM) 1.000 1.000 0.985 1.000 0.988

2-way FE (F) 1.000 1.000 1.000 0.996
2-way FE (LR) 1.000 1.000 1.000 0.996
2-way FE (LM) 1.000 1.000 0.996 1.000 0.989

First Diffs (F) 1.000 1.000 1.000 0.394
First Diffs (LR) 1.000 1.000 1.000 0.394
First Diffs (LM) 1.000 1.000 1.000 1.000 0.193

Mean Groups (F average) 1.000 0.987 0.827 0.886
Mean Groups (LR average) 1.000 0.986 0.815 0.874
Mean Groups (LM average) 1.000 1.000 0.999 0.983 0.754

Mean Groups (F fisher) 1.000 0.984 0.786 0.858
Mean Groups (LR fisher) 1.000 0.984 0.798 0.870
Mean Groups (LM fisher) 1.000 0.984 0.528 0.789 0.606

CCE (F average) 0.090 0.037 0.007 0.051
CCE (LR average) 0.075 0.017 0.998 0.043
CCE (LM average) 0.035 0.083 1.000 1.000 0.820

CCE (F fisher) 0.024 0.004 0.012 0.012
CCE (LR fisher) 0.049 0.007 0.021 0.027
CCE (LM fisher) 0.021 0.003 0.013 0.011 0.000

Table 11: Rejection frequencies (size) for misspecification tests: Case F.

AR ARCH Normal Hetero RESET

POLS (F) 1.000 1.000 0.999 0.774
POLS (LR) 1.000 1.000 0.999 0.774
POLS (LM) 1.000 1.000 0.974 0.999 0.644

1-way FE (F) 1.000 1.000 1.000 0.999
1-way FE (LR) 1.000 1.000 1.000 0.999
1-way FE (LM) 1.000 1.000 0.990 1.000 0.994

2-way FE (F) 1.000 1.000 1.000 0.998
2-way FE (LR) 1.000 1.000 1.000 0.998
2-way FE (LM) 1.000 1.000 0.993 1.000 0.991

First Diffs (F) 1.000 1.000 1.000 0.409
First Diffs (LR) 1.000 1.000 1.000 0.409
First Diffs (LM) 1.000 1.000 1.000 1.000 0.220

Mean Groups (F average) 1.000 0.984 0.781 0.859
Mean Groups (LR average) 1.000 0.984 0.766 0.852
Mean Groups (LM average) 1.000 1.000 1.000 0.990 0.721

Mean Groups (F fisher) 1.000 0.978 0.732 0.830
Mean Groups (LR fisher) 1.000 0.980 0.751 0.841
Mean Groups (LM fisher) 1.000 0.978 0.476 0.737 0.556

CCE (F average) 0.091 0.037 0.006 0.059
CCE (LR average) 0.080 0.014 0.998 0.052
CCE (LM average) 0.050 0.087 1.000 1.000 0.804

CCE (F fisher) 0.038 0.005 0.006 0.015
CCE (LR fisher) 0.060 0.006 0.020 0.032
CCE (LM fisher) 0.036 0.005 0.012 0.004 0.000

Table 12: Rejection frequencies (size) for misspecification tests: Case G.
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and 8): while in the stationary factor case some of the MG Fisher and in particular the CCE
Fisher tests still have reasonable size, the performance worsens further in the non-stationary
factor case. Although we would expect the misspecification of the MG estimator to drive
some of the results, it is curious that the CCE results are so poor: this estimator accounts
for the unobserved common effects and produces consistent and efficient estimates of the slope
coefficient, yet particularly serial correlation and RESET tests indicate misspecification. For
this and the remainder of the cases all of the levels estimators are misspecified and thus their
misspecification tests are vastly oversized — in the following we therefore limit our discussion
to the two heterogeneous estimators (MG, CCE).

Case E(i) in Table 9 again highlights that the nature of how we introduce non-stationarity in
the x-variable matters: the size statistics for the CCE in this case with common I(1) factors in
x improve dramatically over those in Case D(i) with a pure random walk x. The CCE Fisher
statistics again perform best (MG is severely oversized here and throughout the following cases)
and the same pattern prevails in Case E(ii) (Table 9) where the additional unobserved factors
in y are integrated rather than stationary (neither seems to matter greatly for the performance
of the CCE, which accounts for them via cross-section averages). We thus conclude that the
poor size properties of the CCE in Cases D(i) and D(ii) are not down to the common factor,
but the nature of the non-stationarity in the regressor — this is curious, given that D(ii) is
identical to the setup in Case C, where the CCE performs noticeably better.

Given the considerable complexity of the common factor setup with factor overlap (Case F) it is
of great interest to see that the size properties of the CCE estimator do not deteriorate further
— if anything the pattern of the Fisher statistics in Table 11 improves on the comparable
version without endogeneity in Case E(ii). Recall that CCE represented the only unbiased
estimator for Case F, although the 2-way FE performed comparably, albeit with a much wider
spread.

The results for Case G (Table 12) where we introduce simultaneity then raises concerns over the
CCE estimator, which is subject to substantial bias under this setup: size properties are still
close to those in the previous case, with somewhat oversized test statistics for serial correlation
and heteroskedasticity. Ignoring simultaneity leads to biased estimates, but in the present case
does not have further implications for the resulting residuals (and thus for the residual-based
misspecification tests).

An interesting conclusion from this discussion is that the severe size distortions which trouble
the regression models in levels (due to the misspecification in terms of parameter heterogene-
ity) are already prevalent in those cases (C to E(ii)) where estimation is still unbiased but
characterised by (initially mild but eventually substantial) inefficiency.

In Table 13 we present the mean and standard deviation (in parentheses) of the slope estimates
under misspecification. With the exception of the functional form misspecification the results
for each estimator deteriorate as we consider more complex Cases: either in terms of bias or
efficiency or both. Having said that, with the exception of the simultaneity setup in Case G
the CCE estimator remains unbiased throughout and is superior to most other estimators in
efficiency terms.

VI.2.2 Power Properties

Turning to the power properties, Tables 14 to 21 display rejection frequencies when the DGP
contains a misspecification. Each block of results in each table, running down the rows, relates
to a particular misspecification that we impose on the DGP as discussed above; for instance, the
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POLS 1FE
Case - AR ARCH Hetero Normal RESET - AR ARCH Hetero Normal RESET
A 1.00

(0.02)
1.00
(0.03)

1.00
(0.03)

1.00
(0.03)

1.00
(0.04)

1.00
(0.06)

1.00
(0.02)

1.00
(0.03)

1.00
(0.03)

1.00
(0.03)

1.00
(0.04)

1.00
(0.06)

B 1.00
(0.00)

1.00
(0.01)

1.00
(0.00)

1.00
(0.00)

1.00
(0.03)

1.07
(4.89)

1.00
(0.00)

1.00
(0.02)

1.00
(0.01)

1.00
(0.01)

1.00
(0.06)

1.09
(5.41)

C 0.99
(0.28)

0.98
(0.27)

1.00
(0.28)

0.99
(0.29)

1.01
(0.28)

0.89
(7.61)

0.99
(0.23)

0.99
(0.24)

1.00
(0.25)

1.00
(0.25)

0.99
(0.24)

0.74
(7.90)

Di 1.01
(0.29)

1.02
(0.29)

1.00
(0.27)

0.99
(0.28)

0.99
(0.27)

1.06
(7.77)

1.00
(0.24)

1.01
(0.24)

1.00
(0.24)

0.99
(0.24)

0.99
(0.25)

1.02
(8.04)

Dii 1.00
(0.28)

1.01
(0.30)

1.00
(0.29)

1.00
(0.29)

0.99
(0.29)

1.06
(7.92)

1.00
(0.26)

1.01
(0.27)

1.00
(0.27)

1.00
(0.27)

1.00
(0.27)

1.07
(7.88)

Ei 1.01
(0.31)

1.00
(0.31)

1.01
(0.31)

0.99
(0.31)

1.00
(0.33)

0.52
(21.40)

1.00
(0.21)

0.99
(0.21)

1.00
(0.21)

1.00
(0.21)

1.01
(0.22)

0.48
(21.29)

Eii 1.00
(0.52)

1.02
(0.55)

0.98
(0.52)

0.97
(0.52)

0.98
(0.51)

−0.18
(21.02)

1.01
(0.54)

1.01
(0.59)

0.99
(0.57)

0.98
(0.55)

0.99
(0.55)

−0.29
(20.57)

F 1.32
(0.38)

1.32
(0.38)

1.31
(0.37)

1.32
(0.37)

1.31
(0.39)

1.93
(30.81)

1.43
(0.32)

1.44
(0.34)

1.43
(0.32)

1.43
(0.32)

1.43
(0.34)

1.91
(29.73)

G 1.33
(0.37)

1.34
(0.37)

1.36
(0.37)

1.32
(0.38)

1.33
(0.36)

2.09
(26.83)

1.46
(0.32)

1.47
(0.31)

1.47
(0.33)

1.44
(0.33)

1.45
(0.32)

2.18
(26.73)

2FE FD
Case - AR ARCH Hetero Normal RESET - AR ARCH Hetero Normal RESET
A 1.00

(0.02)
1.00
(0.03)

1.00
(0.03)

1.00
(0.03)

1.00
(0.04)

1.00
(0.06)

1.00
(0.02)

1.00
(0.01)

1.00
(0.04)

1.00
(0.04)

1.00
(0.04)

1.00
(0.06)

B 1.00
(0.00)

1.00
(0.02)

1.00
(0.01)

1.00
(0.01)

1.00
(0.06)

1.06
(4.96)

1.00
(0.03)

1.00
(0.02)

1.00
(0.04)

1.00
(0.04)

1.00
(0.27)

1.04
(3.35)

C 0.99
(0.23)

0.99
(0.24)

1.00
(0.25)

1.00
(0.25)

1.00
(0.24)

0.73
(7.58)

1.00
(0.18)

1.00
(0.19)

0.99
(0.19)

1.00
(0.19)

0.99
(0.32)

1.02
(4.90)

Di 1.00
(0.24)

1.01
(0.24)

1.00
(0.24)

0.99
(0.24)

0.99
(0.25)

1.04
(7.76)

1.00
(0.19)

1.01
(0.19)

1.00
(0.19)

0.99
(0.19)

0.99
(0.33)

1.06
(5.06)

Dii 1.00
(0.23)

1.00
(0.24)

1.00
(0.24)

1.01
(0.24)

0.99
(0.25)

1.08
(7.52)

1.00
(0.18)

1.00
(0.19)

1.00
(0.19)

1.00
(0.18)

0.99
(0.33)

1.10
(4.84)

Ei 1.01
(0.40)

0.99
(0.41)

1.02
(0.39)

0.99
(0.40)

1.01
(0.42)

0.36
(30.25)

1.00
(0.19)

0.99
(0.20)

1.00
(0.19)

1.00
(0.19)

1.00
(0.27)

0.47
(19.78)

Eii 0.99
(0.41)

1.02
(0.41)

1.00
(0.40)

0.98
(0.41)

1.01
(0.43)

−0.87
(29.51)

0.99
(0.20)

1.00
(0.19)

1.00
(0.19)

0.99
(0.19)

1.00
(0.27)

−0.37
(19.29)

F 1.01
(0.45)

0.99
(0.45)

1.01
(0.44)

1.01
(0.43)

0.99
(0.47)

1.27
(44.49)

1.24
(0.19)

1.23
(0.20)

1.24
(0.20)

1.24
(0.19)

1.24
(0.29)

1.73
(28.76)

G 1.23
(0.39)

1.24
(0.35)

1.25
(0.39)

1.21
(0.39)

1.22
(0.39)

2.52
(34.76)

1.47
(0.20)

1.47
(0.18)

1.49
(0.19)

1.47
(0.20)

1.46
(0.26)

2.02
(25.93)

MG CCE
Case - AR ARCH Hetero Normal RESET - AR ARCH Hetero Normal RESET
A 1.00

(0.02)
1.00
(0.03)

1.00
(0.03)

1.00
(0.03)

1.00
(0.04)

1.00
(0.06)

1.00
(0.02)

1.00
(0.03)

1.00
(0.03)

1.00
(0.03)

1.00
(0.04)

1.00
(0.06)

B 1.00
(0.01)

1.00
(0.03)

1.00
(0.01)

1.00
(0.01)

1.00
(0.06)

1.03
(3.25)

1.00
(0.01)

1.00
(0.03)

1.00
(0.01)

1.00
(0.01)

1.00
(0.07)

1.01
(3.30)

C 1.00
(0.18)

1.00
(0.19)

0.99
(0.19)

1.00
(0.19)

1.00
(0.19)

0.97
(4.80)

1.00
(0.18)

1.00
(0.19)

0.99
(0.19)

1.00
(0.19)

1.00
(0.19)

0.96
(4.77)

Di 1.00
(0.19)

1.01
(0.19)

1.00
(0.18)

1.00
(0.18)

0.99
(0.20)

1.14
(4.94)

1.00
(0.19)

1.01
(0.19)

1.00
(0.18)

1.00
(0.18)

0.99
(0.20)

1.16
(4.92)

Dii 1.00
(0.22)

1.01
(0.21)

1.00
(0.21)

1.00
(0.21)

1.00
(0.22)

1.07
(4.73)

1.00
(0.18)

1.00
(0.19)

1.00
(0.18)

1.00
(0.18)

0.99
(0.20)

1.10
(4.67)

Ei 1.00
(0.19)

0.99
(0.19)

1.00
(0.19)

1.00
(0.18)

1.01
(0.20)

0.52
(18.56)

1.00
(0.18)

0.99
(0.19)

1.00
(0.18)

1.00
(0.18)

1.00
(0.27)

0.49
(18.09)

Eii 1.02
(0.60)

1.01
(0.65)

0.99
(0.62)

0.98
(0.61)

0.99
(0.60)

−0.18
(17.90)

0.99
(0.19)

1.00
(0.18)

0.99
(0.18)

0.99
(0.19)

1.01
(0.28)

−0.30
(17.64)

F 1.46
(0.32)

1.48
(0.34)

1.47
(0.32)

1.47
(0.31)

1.47
(0.34)

1.87
(27.18)

1.00
(0.18)

0.99
(0.19)

1.00
(0.19)

1.00
(0.18)

1.00
(0.35)

1.38
(26.62)

G 1.50
(0.32)

1.51
(0.31)

1.51
(0.32)

1.49
(0.32)

1.50
(0.32)

2.05
(24.86)

1.47
(0.19)

1.47
(0.18)

1.49
(0.18)

1.47
(0.19)

1.41
(0.29)

1.94
(24.31)

iMG
Case - AR ARCH Hetero Normal RESET
A 1.00

(0.02)
1.00
(0.03)

1.00
(0.03)

1.00
(0.03)

1.00
(0.04)

1.00
(0.06)

B 1.00
(0.01)

1.00
(0.03)

1.00
(0.01)

1.00
(0.01)

1.00
(0.07)

1.03
(3.27)

C 1.00
(0.18)

1.00
(0.19)

0.99
(0.19)

1.00
(0.19)

1.00
(0.19)

0.96
(4.82)

Di 1.00
(0.19)

1.01
(0.19)

1.00
(0.18)

1.00
(0.18)

0.99
(0.20)

1.15
(4.96)

Dii 1.00
(0.18)

1.00
(0.18)

1.00
(0.18)

1.00
(0.17)

0.99
(0.20)

1.09
(4.75)

Ei 1.00
(0.18)

0.99
(0.19)

1.00
(0.18)

1.00
(0.18)

1.00
(0.28)

0.45
(18.72)

Eii 0.99
(0.19)

1.00
(0.18)

0.99
(0.18)

0.99
(0.19)

1.01
(0.28)

−0.31
(18.32)

F 1.00
(0.18)

0.99
(0.19)

1.00
(0.19)

1.00
(0.18)

1.01
(0.33)

1.46
(27.68)

G 1.48
(0.19)

1.48
(0.18)

1.50
(0.18)

1.48
(0.19)

1.47
(0.28)

2.00
(25.21)

Table 13: Mean estimates (empirical standard errors) under misspecification.

28



first block represents the case where we add autocorrelated residuals to the model. Once again
we present results for each of the 9 cases in separate tables — note that each table refers to the
preferred estimator from the previous discussion of empirical size across the five misspecification
tests, and this estimator is mentioned in the table caption. If the misspecification indicated in
the row, say serial correlation, is present in the DGP then the rejection frequency for the relevant
test, here the AR test in the first column, represents the power of the test, whereas the rejection
frequencies for the tests in all other columns represent their size. Given the construction of the
tables, an ideal size/power scenario would be if along the block-diagonal entries we found high
rejection frequencies, but in the off-block-diagonal entries we found frequencies nearer to the
nominal size of 1%.

AR ARCH Normal Hetero RESET

AR (F) 1.000 1.000 0.010 0.009
AR (LR) 1.000 1.000 0.010 0.009
AR (LM) 1.000 1.000 0.337 0.010 0.005

ARCH (F) 0.107 1.000 0.007 0.015
ARCH (LR) 0.108 1.000 0.007 0.015
ARCH (LM) 0.107 1.000 1.000 0.007 0.006

Normal (F) 0.013 0.018 0.015 0.014
Normal (LR) 0.013 0.018 0.016 0.014
Normal (LM) 0.013 0.018 1.000 0.015 0.003

Hetero (F) 0.009 0.009 1.000 0.261
Hetero (LR) 0.009 0.009 1.000 0.261
Hetero (LM) 0.009 0.009 1.000 1.000 0.156
RESET (F) 0.01 0.014 1.000 1

RESET (LR) 0.01 0.014 1.000 1
RESET (LM) 0.01 0.014 1.000 1.000 1

Table 14: Rejection frequencies (power) for misspecification tests:
Case A for the POLS estimator.

AR ARCH Normal Hetero RESET

AR (F) 1.000 1.000 0.332 0.556
AR (LR) 1.000 1.000 0.332 0.556
AR (LM) 1.000 1.000 0.325 0.332 0.391

ARCH (F) 0.107 1.000 0.087 0.009
ARCH (LR) 0.108 1.000 0.087 0.009
ARCH (LM) 0.109 1.000 1.000 0.087 0.003

Normal (F) 0.012 0.013 0.027 0.008
Normal (LR) 0.012 0.013 0.027 0.008
Normal (LM) 0.012 0.013 1.000 0.027 0.001

Hetero (F) 0.214 1.000 1.000 0.303
Hetero (LR) 0.214 1.000 1.000 0.303
Hetero (LM) 0.214 1.000 1.000 1.000 0.184
RESET (F) 1.000 1.000 1.000 1

RESET (LR) 1.000 1.000 1.000 1
RESET (LM) 1.000 1.000 1.000 1.000 1

Table 15: Rejection frequencies (power) for misspecification tests:
Case B for the POLS estimator.

We begin our discussion with the misspecification tests following POLS regression in the bench-
mark Case A (Table 14). All five testing procedures have near-perfect power in detecting ‘their’
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AR ARCH Normal Hetero RESET

AR (F average) 1.000 1.000 1.000 1.000
AR (LR average) 1.000 1.000 1.000 1.000
AR (LM average) 1.000 1.000 1.000 1.000 0.985

AR (F fisher) 1.000 1.000 1.000 1.000
AR (LR fisher) 1.000 1.000 1.000 1.000
AR (LM fisher) 1.000 1.000 0.757 1.000 0.970

ARCH (F average) 0.824 0.998 0.720 0.077
ARCH (LR average) 0.813 0.994 0.676 0.050
ARCH (LM average) 0.741 0.815 1.000 1.000 0.757

ARCH (F fisher) 0.693 0.984 0.563 0.013
ARCH (LR fisher) 0.770 0.985 0.621 0.033
ARCH (LM fisher) 0.676 0.981 1.000 0.561 0.000

Normal (F average) 0.048 0.396 0.095 0.088
Normal (LR average) 0.012 0.009 0.053 0.065
Normal (LM average) 0.001 0.042 1.000 0.890 0.752

Normal (F fisher) 0.000 0.000 0.032 0.031
Normal (LR fisher) 0.002 0.000 0.036 0.048
Normal (LM fisher) 0.000 0.000 1.000 0.027 0.001
Hetero (F average) 0.786 0.997 1.000 0.595

Hetero (LR average) 0.773 0.997 1.000 0.577
Hetero (LM average) 0.702 0.770 1.000 1.000 0.145

Hetero (F fisher) 0.651 0.994 1.000 0.431
Hetero (LR fisher) 0.718 0.996 1.000 0.504
Hetero (LM fisher) 0.633 0.994 1.000 1.000 0.017

RESET (F average) 1.000 1.000 1.000 1.000
RESET (LR average) 1.000 1.000 1.000 1.000
RESET (LM average) 1.000 1.000 1.000 1.000 1.000

RESET (F fisher) 1.000 1.000 1.000 1.000
RESET (LR fisher) 1.000 1.000 1.000 1.000
RESET (LM fisher) 1.000 1.000 1.000 1.000 1.000

Table 16: Rejection frequencies (power) for misspecification tests:
Case C for the MG estimator.

respective misspecification (diagonal blocks), although in a number of cases the misspecification
incorporated expectedly or unexpectedly also afflicts one of the other testing procedures: serial
correlation expectedly leads to ARCH but also non-normality. Similarly ARCH induces mild
serial correlation, leading to oversized statistics for the AR test, as well as non-normal errors.
In Table 14 non-normal errors represent the only misspecification which induces substantial size
for all the other misspecification tests. Heteroskedastic residuals are also non-normal and given
the way we construct them (using squared x) lead the RESET test to be oversized. In turn once
we introduce the functional misspecification this induces heteroskedasticity and non-normality,
such that these tests reject.

Once non-stationary variables and cointegration enter the fold in Case B (Table 15) many of the
previously well-sized testing procedures are seriously oversized. Note that this is in the context
of a cointegrating relationship between y and x which led to super consistent estimates of the
homogeneous slope coefficient. Serially correlated errors now also induces heteroskedasticity
and functional form tests to reject, an ARCH process in the errors leads to relatively mild
increases in the size of the heteroskedasticity test, heteroskedastic errors lead to the AR and in
particular the ARCH tests to reject, while a non-linear functional form induces unit rejection
frequencies in all five testing procedures — the latter finding is not surprising, since our POLS
estimator does not pick up the squared and cubed predictions of y we use to induce functional
form misspecification (the DGP is a cointegration between y, x, ŷ2, our POLS regression model
only allows for cointegration between y and x). Since this applies in all of the cases to follow
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we do not further concern ourselves with the functional form misspecification.

AR ARCH Normal Hetero RESET

AR (F average) 1.000 1.000 1.000 1.000
AR (LR average) 1.000 1.000 1.000 1.000
AR (LM average) 1.000 1.000 1.000 1.000 0.843

AR (F fisher) 1.000 1.000 1.000 1.000
AR (LR fisher) 1.000 1.000 1.000 1.000
AR (LM fisher) 1.000 1.000 0.316 1.000 0.760

ARCH (F average) 0.864 0.985 0.686 0.371
ARCH (LR average) 0.855 0.982 1.000 0.380
ARCH (LM average) 0.797 0.852 1.000 1.000 0.444

ARCH (F fisher) 0.753 0.964 0.721 0.235
ARCH (LR fisher) 0.813 0.967 0.809 0.328
ARCH (LM fisher) 0.739 0.959 1.000 0.714 0.004

Normal (F average) 0.261 0.363 0.026 0.420
Normal (LR average) 0.243 0.010 0.999 0.432
Normal (LM average) 0.195 0.251 1.000 1.000 0.436

Normal (F fisher) 0.180 0.002 0.035 0.299
Normal (LR fisher) 0.209 0.004 0.064 0.385
Normal (LM fisher) 0.173 0.001 1.000 0.028 0.012
Hetero (F average) 0.772 0.992 1.000 0.742

Hetero (LR average) 0.759 0.990 1.000 0.763
Hetero (LM average) 0.677 0.758 1.000 1.000 0.150

Hetero (F fisher) 0.630 0.982 1.000 0.581
Hetero (LR fisher) 0.705 0.983 1.000 0.704
Hetero (LM fisher) 0.610 0.979 1.000 1.000 0.045

RESET (F average) 1.000 1.000 1.000 1.000
RESET (LR average) 1.000 1.000 1.000 1.000
RESET (LM average) 1.000 1.000 1.000 1.000 1.000

RESET (F fisher) 1.000 1.000 1.000 1.000
RESET (LR fisher) 1.000 1.000 1.000 1.000
RESET (LM fisher) 1.000 1.000 1.000 1.000 1.000

Table 17: Rejection frequencies (power) for misspecification tests:
Case D(i) for the CCE estimator.

In Case C (Table 16) with heterogeneous intercepts and slopes all pooled regression models are
misspecified, but the MG estimator is unbiased (though not super-consistent) and efficient in
picking up the heterogeneous cointegration between y and x. As before all testing procedures
have excellent power properties picking out ‘their’ misspecification, but with the exception of
non-normality all other DGPs incorporating misspecification lead to severe size-distortions in
the ‘other’ test statistics. Thus while in Case B the pooled panel did only induce a number
of ‘other’ test statistics to be over-sized, the limited number of observations (T ) in each first
stage regression of the MG estimator means these misspecifications come to the fore.

The remainder of the cases in Tables 17 to 22 each have a more or less identical pattern
to that discussed here for Case C: all misspecification tests have excellent power for ‘their’
misspecification but with the occasional exception of the normality tests all ‘other’ tests are
grossly oversized.

VII Conclusions

In this paper we have addressed the role of misspecification testing in (primarily) time-series
panels of data. Using a motivating example from the production function literature, and
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AR ARCH Normal Hetero RESET

AR (F average) 1.000 1.000 1.000 1.000
AR (LR average) 1.000 1.000 1.000 1.000
AR (LM average) 1.000 1.000 1.000 1.000 0.954

AR (F fisher) 1.000 1.000 1.000 1.000
AR (LR fisher) 1.000 1.000 1.000 1.000
AR (LM fisher) 1.000 1.000 0.977 1.000 0.904

ARCH (F average) 0.848 0.982 0.803 0.499
ARCH (LR average) 0.836 0.980 1.000 0.513
ARCH (LM average) 0.781 0.839 1.000 1.000 0.525

ARCH (F fisher) 0.736 0.957 0.825 0.395
ARCH (LR fisher) 0.800 0.969 0.898 0.470
ARCH (LM fisher) 0.721 0.949 0.992 0.824 0.024

Normal (F average) 0.332 0.367 0.031 0.518
Normal (LR average) 0.316 0.015 0.999 0.530
Normal (LM average) 0.286 0.326 1.000 1.000 0.497

Normal (F fisher) 0.272 0.004 0.037 0.401
Normal (LR fisher) 0.296 0.005 0.064 0.482
Normal (LM fisher) 0.262 0.003 0.998 0.035 0.029
Hetero (F average) 0.750 0.998 1.000 0.624

Hetero (LR average) 0.735 0.994 1.000 0.643
Hetero (LM average) 0.654 0.737 1.000 1.000 0.201

Hetero (F fisher) 0.611 0.981 1.000 0.471
Hetero (LR fisher) 0.683 0.986 1.000 0.573
Hetero (LM fisher) 0.591 0.980 0.999 1.000 0.009

RESET (F average) 1.000 1.000 1.000 1.000
RESET (LR average) 1.000 1.000 1.000 1.000
RESET (LM average) 1.000 1.000 1.000 1.000 1.000

RESET (F fisher) 1.000 1.000 1.000 1.000
RESET (LR fisher) 1.000 1.000 1.000 1.000
RESET (LM fisher) 1.000 1.000 1.000 1.000 1.000

Table 18: Rejection frequencies (power) for misspecifications tests:
Case D(ii) for the CCE estimator.

starting from the premise that diagnostic testing is equally important in a panel as in the
time-series context, we have attempted to assess the performance of some commonly used tests
for misspecification adapted to the panel context. Any consideration of misspecification testing
must of course take into account the properties of the estimators used. Our paper is therefore
a very general consideration of the behaviour of a range of panel estimators and the size and
power properties of the tests based on these estimators. Our approach is based on simulations
since these lead to findings that may in most cases be readily interpreted, using the theoretical
insight gained in some of the recent literature, notably the contributions by Hashem Pesaran
and various co-authors.

A key consideration guiding our study is of course the processes that generate the data. Starting
with a homogeneous specification (with stationary variables) for the data generation process,
we extend the framework to allow for non-stationary data, thereby introducing homogeneous or
heterogeneous cointegration. Perhaps more importantly with empirical applications in mind, we
then allow for cross-section dependence across the units of the panel, by means of a multi-factor
error structure underlying the data. These unobserved factors may be taken to be stationary
or non-stationary and we consider cases where common factors drive either the dependent
variable or the independent variables, or both, and where ‘factor overlap’ exists, which leads to
considerations of endogeneity in the panel regression. We furthermore introduce feedback from
dependent variable to regressors, which induces simultaneity in the variable series. The latter
is often thought to be an important feature in empirical regressions, such as the one introduced
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AR ARCH Normal Hetero RESET

AR (F average) 1.000 1.000 0.952 0.948
AR (LR average) 1.000 1.000 1.000 0.951
AR (LM average) 1.000 1.000 1.000 1.000 0.564

AR (F fisher) 1.000 1.000 0.958 0.913
AR (LR fisher) 1.000 1.000 0.974 0.939
AR (LM fisher) 1.000 1.000 0.296 0.960 0.465

ARCH (F average) 0.769 0.988 0.316 0.078
ARCH (LR average) 0.752 0.982 1.000 0.071
ARCH (LM average) 0.681 0.754 1.000 1.000 0.687

ARCH (F fisher) 0.637 0.968 0.369 0.032
ARCH (LR fisher) 0.709 0.973 0.479 0.049
ARCH (LM fisher) 0.618 0.964 1.000 0.354 0.000

Normal (F average) 0.051 0.371 0.020 0.125
Normal (LR average) 0.031 0.005 0.994 0.113
Normal (LM average) 0.018 0.048 1.000 1.000 0.667

Normal (F fisher) 0.010 0.001 0.036 0.062
Normal (LR fisher) 0.023 0.001 0.058 0.088
Normal (LM fisher) 0.008 0.000 1.000 0.029 0.009
Hetero (F average) 0.614 0.813 0.999 0.582

Hetero (LR average) 0.600 0.791 1.000 0.591
Hetero (LM average) 0.524 0.599 1.000 1.000 0.362

Hetero (F fisher) 0.487 0.744 0.999 0.492
Hetero (LR fisher) 0.547 0.757 1.000 0.556
Hetero (LM fisher) 0.476 0.735 0.942 0.999 0.13

RESET (F average) 0.805 0.792 1.000 0.999
RESET (LR average) 0.795 0.777 1.000 0.999
RESET (LM average) 0.739 0.792 1.000 1.000 0.942

RESET (F fisher) 0.703 0.717 1.000 0.999
RESET (LR fisher) 0.761 0.736 1.000 0.999
RESET (LM fisher) 0.691 0.710 1.000 1.000 0.924

Table 19: Rejection frequencies (power) for misspecifications tests:
Case E(i) for the CCE estimator.

in our motivating example.

We allow for various types of misspecification — in terms of serial correlation, ARCH ef-
fects, heteroskedasticity, non-normality and non-linearity — to exist in all versions of the data
generation process, and investigate the behaviour of a number of empirical estimators with
or without the presence of misspecification. These estimators included pooled OLS, one or
two-way fixed effect estimators, differenced estimators, mean group estimators and Common
Correlated Effects estimators. This last class of estimators is thought to be particularly effi-
cacious in capturing cross-section dependence of a fairly general kind. Consequent upon an
investigation of the properties of these estimators we then look at the size and power properties
of the misspecification tests for the many different estimator and DGP combinations.

Depending upon the specification(s) of the data generation process(es) and the estimator(s) a
number of findings may be noted. For the benchmark specification, with a lot of homogeneity
across the panel members and all processes are stationary, pooled OLS estimators perform well,
as expected. The introduction of heterogeneity leads to the deterioration of the performance of
the pooled OLS estimators (and of the tests based on them) while mean group and Common
Correlated Effects estimators come to the foreground in terms of delivering tests with good size
and power properties. However, even for this class of estimators, the addition of cross-section
dependence via common factors leads to difficulties. While we would expect the mean group
estimator, which operates under the assumption that the units of the panel are independent
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AR ARCH Normal Hetero RESET

AR (F average) 1.000 1.000 0.983 0.998
AR (LR average) 1.000 1.000 1.000 0.998
AR (LM average) 1.000 1.000 1.000 1.000 0.819

AR (F fisher) 1.000 1.000 0.986 0.996
AR (LR fisher) 1.000 1.000 0.994 0.997
AR (LM fisher) 1.000 1.000 0.902 0.986 0.753

ARCH (F average) 0.823 0.992 0.498 0.077
ARCH (LR average) 0.812 0.987 1.000 0.067
ARCH (LM average) 0.732 0.812 1.000 1.000 0.793

ARCH (F fisher) 0.690 0.974 0.555 0.018
ARCH (LR fisher) 0.766 0.978 0.657 0.044
ARCH (LM fisher) 0.666 0.969 0.880 0.539 0.000

Normal (F average) 0.05 0.383 0.031 0.094
Normal (LR average) 0.037 0.015 0.993 0.087
Normal (LM average) 0.017 0.043 1.000 1.000 0.794

Normal (F fisher) 0.013 0.003 0.035 0.044
Normal (LR fisher) 0.023 0.003 0.059 0.066
Normal (LM fisher) 0.013 0.001 0.953 0.03 0.004
Hetero (F average) 0.652 0.830 0.997 0.491

Hetero (LR average) 0.642 0.816 1.000 0.497
Hetero (LM average) 0.579 0.642 1.000 1.000 0.386

Hetero (F fisher) 0.546 0.770 0.997 0.376
Hetero (LR fisher) 0.599 0.777 0.998 0.462
Hetero (LM fisher) 0.536 0.764 0.926 0.997 0.053

RESET (F average) 0.995 0.967 1.000 1.000
RESET (LR average) 0.995 0.964 1.000 1.000
RESET (LM average) 0.992 0.995 1.000 1.000 0.969

RESET (F fisher) 0.991 0.942 1.000 1.000
RESET (LR fisher) 0.995 0.947 1.000 1.000
RESET (LM fisher) 0.989 0.939 1.000 1.000 0.958

Table 20: Rejection frequencies (power) for misspecifications tests:
Case E(ii) for the CCE estimator.

of each other, to behave unsatisfactorily in data generation processes characterized by cross-
section dependence, Common Correlated Effects estimators are meant to concentrate out this
dependence. We find that the diagnostic tests for the CCEMG estimator do not always deliver
better results than those for the näıve MG estimator and our study shows that the stationarity
properties of the regressors and their cointegration properties relative to the regressor both mat-
ter in this context. In other words, both the nature of the non-stationarity and correspondingly
the form of the dependence introduced matter for the behaviour of the misspecification tests.
There are furthermore issues related to over-sizing of tests, linked perhaps to a consideration
of the behaviour of the estimates for standard errors, which are also discussed here.

It is important to emphasize in conclusion that while difficulties undoubtedly exist in extending
tests for misspecification to a panel setting, our results show that there is ample scope for
misspecification testing to become an important part of the armoury for estimating panel data
models such as those used in the vast literature on cross-country growth empirics (for a detailed
survey see Durlauf et al., 2005). Estimators, properly defined and constructed, do have sound
residual properties and diagnostic tests based on these estimators do have power in detecting
misspecification, which if unaccounted for can lead to serious deficiencies in the interpretation
of empirical results. Certainly, a great deal of work remains in extending our simulation exercise
to allow for more detail, such as more variation in the T and N dimensions of the panel, in
allowing for more regressors and above all in developing a better theoretical understanding
of why certain estimators which might be expected to perform well in certain contexts do not
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AR ARCH Normal Hetero RESET

AR (F average) 1.000 1.000 0.993 1.000
AR (LR average) 1.000 1.000 1.000 1.000
AR (LM average) 1.000 1.000 1.000 1.000 0.841

AR (F fisher) 1.000 1.000 0.994 0.999
AR (LR fisher) 1.000 1.000 0.997 1.000
AR (LM fisher) 1.000 1.000 0.885 0.994 0.791

ARCH (F average) 0.829 0.988 0.547 0.093
ARCH (LR average) 0.821 0.987 1.000 0.078
ARCH (LM average) 0.747 0.821 1.000 1.000 0.794

ARCH (F fisher) 0.688 0.965 0.602 0.035
ARCH (LR fisher) 0.769 0.970 0.692 0.056
ARCH (LM fisher) 0.670 0.961 0.993 0.596 0.000

Normal (F average) 0.065 0.356 0.026 0.106
Normal (LR average) 0.046 0.011 0.993 0.086
Normal (LM average) 0.025 0.059 1.000 1.000 0.778

Normal (F fisher) 0.016 0.002 0.028 0.036
Normal (LR fisher) 0.031 0.003 0.050 0.070
Normal (LM fisher) 0.014 0.001 0.997 0.025 0.000
Hetero (F average) 0.678 0.863 0.999 0.548

Hetero (LR average) 0.665 0.849 1.000 0.555
Hetero (LM average) 0.613 0.663 1.000 1.000 0.350

Hetero (F fisher) 0.582 0.807 0.999 0.441
Hetero (LR fisher) 0.625 0.818 0.999 0.517
Hetero (LM fisher) 0.573 0.804 0.954 0.999 0.087

RESET (F average) 0.995 0.970 1.000 1.000
RESET (LR average) 0.995 0.960 1.000 1.000
RESET (LM average) 0.992 0.995 1.000 1.000 0.951

RESET (F fisher) 0.992 0.945 1.000 1.000
RESET (LR fisher) 0.993 0.949 1.000 1.000
RESET (LM fisher) 0.991 0.941 0.999 1.000 0.927

Table 21: Rejection frequencies (power) for misspecifications tests:
Case F for the CCE estimator.

appear to do so. Our paper therefore marks a start in all these directions and serves to highlight
the interesting pathways ahead.
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A Appendix

Table A.1: Empirical example: descriptive statistics

Variables in levels

variable N mean median st.dev. min max
Y 3135 3.2E+11 8.1E+10 9.8E+11 1.1E+09 1.3E+13
L 3135 3.9E+07 1.1E+07 1.0E+08 1.5E+05 1.1E+09
K 3135 8.9E+11 2.0E+11 2.8E+12 2.0E+09 4.2E+13

Variables in levels (log)

variable N mean median st.dev. min max
ln Y 3135 25.13 25.11 1.61 20.78 30.19
ln L 3135 16.32 16.24 1.51 11.89 20.85
ln K 3135 25.95 26.04 1.79 21.43 31.37

Variables in growth rates

variable N mean median st.dev. min max
∆ln Y 3080 3.9% 4.0% 4.4% -23.4% 29.1%
∆ln L 3080 1.7% 1.8% 1.1% -10.7% 8.4%
∆ln K 3080 4.1% 3.8% 2.6% -4.3% 16.7%

Variables in per capita terms

variable N mean median st.dev. min max
y 3135 10,553 7,034 9,818 312 77,766
k 3135 32,745 16,881 36,973 317 243,195

Variables in per capita terms (log)

variable N mean median st.dev. min max
ln y 3135 8.81 8.86 1.02 5.74 11.26
ln k 3135 9.62 9.73 1.44 5.76 12.40

Variables in per capita growth rates

variable N mean median st.dev. min max
∆ln y 3080 2.2% 2.5% 4.4% -26.8% 26.0%
∆ln k 3080 2.3% 2.3% 2.6% -6.6% 17.6%

Notes: N = 55 countries, T = 57 years, balanced panel. Upper case indicates levels, lower case per
capita terms, prefix ‘ln’ refers to logarithms, prefix ‘∆ln’ to growth rates. The raw data are taken
from the Penn World Table 6.3 with capital stock constructed from ki (investment share of GDP)
using the Perpetual Inventory Method. All monetary values are in year 2000 I$ PPP.
Sample Countries: Argentina, Australia, Austria, Belgium, Bolivia, Brazil, Canada, Chile,
Colombia, Congo (Dem. Rep.), Costa Rica, Denmark, Dominican Republic, Ecuador, Egypt, El
Salvador, Ethiopia, France, Greece, Guatemala, Honduras, Iceland, India, Ireland, Israel, Italy,
Kenya, Luxembourg, Mauritius, Mexico, Morocco, Netherlands, New Zealand, Nigeria, Norway,
Pakistan, Panama, Paraguay, Peru, Philippines, Portugal, Puerto Rico, South Africa, Spain, Sri
Lanka, Sweden, Switzerland, Taiwan, Thailand, Turkey, Uganda, United Kingdom, United States,
Uruguay, Venezuela.
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B Misspecification Tests

This appendix is a companion to Section III providing more details on each of the misspecifi-
cation tests employed.

B.1 Autocorrelation

The Breusch (1979) and Godfrey (1978) test for autocorrelated errors uses the residuals as
a proxy, and tests the significance of lagged residual terms in an auxiliary regression of the
residuals on the original regressors and lagged residuals. Hence the test regression is:

ε̂t = β0 + β1xt + α1ε̂t−1 + · · ·+ αrε̂t−r + et, (31)

for rth order autocorrelation. The null hypothesis of no residual autocorrelation is then
α1 = · · · = αr = 0, and this can be tested either via an LM test, an F test or a likelihood ratio
test.

B.2 Heteroskedasticity

The White (1980) test for heteroskedasticity involves regressing the residuals of the regression
model on the explanatory variables from the regression model and the squares of the explanatory
variables:

ε̂2
i = α0 + α1X1,i + · · ·+ αKXK,i + αK+1X

2
1,i + · · ·+ α2KX

2
K,i + vi.

The null hypothesis is:

H0 : α1 = · · · = α2K = 0, (32)

The test statistic is:

Ŵ = TR2
Het −→ χ2

2, (33)

where R2
Het is R2 from auxiliary model. When 2K + 1 → T , the χ2 approximation for the

Wald test is poor and the F-test variant has better small-sample properties in the time-series
context:

FHet =
R2

Het/m

(1− R2
Het) / (T −m)

∼ Fm,T−m. (34)

B.3 ARCH

Engle (1982) proposed autocorrelated conditional heteroskedasticity (ARCH):

Var (εi |εi−1 ) = α1 + α2ε
2
i−1. (35)

Engle also proposed to test for ARCH using the null hypothesis of constant variance:

H0 : α2 = 0. (36)
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Testing proceeds via an auxiliary regression equation consisting of the squared residuals ε̂2
i as

a proxy for the error variance:

ε̂2
i = α1 + α2ε̂

2
i−1 − vi. (37)

The resulting test statistic is:

ZARCH = TR2
ARCH ∼ χ2

1. (38)

We can calculate an F-test equivalent:

FARCH =
R2

ARCH/r

(1− R2
ARCH) / (T −K − 2r)

∼ Fr,T−K−2r, (39)

rth order ARCH is being tested against:

ε̂2
i = α1 +

r∑
j=1

α2ε̂
2
i−j − vi. (40)

B.4 Normality

We test for excess skewness and kurtosis, making us of the third and fourth moments, since
both should be zero for a standard Normally distributed variable: κ3 = κ4 = 0. We test by
finding sample analogues: residuals ε̂i for errors εi. Test statistics:

χ2
skewness = T

κ̂2
3

6
∼ χ2

1, (41)

χ2
kurtosis = T

κ̂2
4

24
∼ χ2

1, (42)

χ2
normality = χ2

skewness + χ2
kurtosis ∼ χ2

2. (43)

This LM test is based on Jarque & Bera (1987) and Doornik & Hansen (2008).

The Normality test is often questioned as a meaningful and important diagnostic test since OLS
estimation can proceed in the absence of Normal residuals, provided the iid assumption still
holds. While this is obviously a well-established theoretical result many applied empiricists feel
that regression analysis represents a process of asking questions of the data, with the intention of
establishing as closely as possible the nature of the underlying DGP. A rejected diagnostic test
then provides a helpful clue and should entice the researcher to go back to their specification
and/or empirical implementation so as to see whether the source of misspecification can be
established.

In mean-groups-type estimation, where time-series are estimated for each panel member in-
dividually and then cumulated or aggregated across the panel, the Normality in time-series
assumption is the important one; but of course, it should also be the case then that all the
residuals pooled are normally distributed, and hence a pooled test variant, regardless of the
estimation procedure, might be important here.

B.5 RESET

An explicit test for the correct functional form of the empirical model was proposed by (Ramsey,
1969). The test includes squares and cubes of the fitted values from the regression model, as
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the null hypothesis of correct functional form states that these additional variables should not
matter. An auxiliary regression is formed to conduct the test:

Yi = β1 + β2X2,i + β3X3,i + β4X4,i + ψ1Ŷ
2
i + ψ2Ŷ

3
i + vi. (44)

The null hypothesis is:

H0 : ψ1 = ψ2 = 0, (45)

and the test statistic:

ZRESET = TR2
RESET ∼ χ2

1. (46)
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