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“[C]hoosing a method [for production function estimation] is a matter of asking oneself which assump-

tions one is comfortable making. Certainly, one cannot escape the fact that some assumptions must be

made when estimating the production function.” Syverson (2010: p.9, emphasis in original)

“[I]n trying to evade this problem [transmission bias], researchers have shifted their focus to thinner

and thinner slices of data, leading to the exacerbation of other problems and misspecifications. Much of

this line of work has been guided, unfortunately, by what ‘econometrics’ as a technology might be able

to do for this problem, rather than focusing on the more important but technically less tractable problem

of data quality and model specification.” Griliches and Mairesse (1995, p.22)

1 Introduction

The estimation of firm-level productivity has attracted an enormous amount of attention in the economic

literature.1 Despite the emergence of Randomized Control Trials (RCT) for the analysis of (micro-

)enterprise-level data (de Mel, McKenzie and Woodruff, 2008, 2009) and the domination of the Rubin

Causal Model in much of microeconometric thinking (e.g. Angrist and Pischke, 2009), regression-based

productivity estimates employing observational data are still very popular and either of direct interest or

used to investigate a range of related issues: the effect of foreign direct investment on domestic firms

(Javorcik, 2004; Haskel, Pereira, and Slaughter, 2007), international technology sourcing (Griffith, Har-

rison, and van Reenen, 2006), the effect of trade liberalisation (Tybout and Westbrook, 1995; Pavcnik,

2002), liberlisation more generally (Arnold, Javorcik, Lipscomb, and Mattoo, 2016), information tech-

nology (Bloom, Sadun, and Van Reenen, 2012), firm and industry restructuring (Disney, Haskel, and

Heden, 2003), agglomeration externalities (Greenstone, Hornbeck, and Moretti, 2010), the effect of ex-

porting (Blalock and Gertler, 2004; Baldwin, Gu, and Yan, 2013), returns to R&D (Hall, Mairesse, and

Mohnen, 2009) as well as firm location and market structure (Syverson, 2004) among other topics. In

firm-level studies these estimates are commonly derived from Cobb-Douglas production function re-

gressions, frequently with no more than passing mention of the various difficulties arising in this first

step of the empirical analysis. Prime amongst these difficulties is the possible correlation between firms’

idiosyncratic productivity shocks and their input choices, arising from the fact that firms observe these

idiosyncratic shocks and adapt their input choices accordingly. If such correlation is present in the data

and given that firm-specific productivity shocks are unobserved by the econometrician, the resulting

least squares (OLS) estimates of input coefficients are biased and inconsistent.

While economists have been well aware of this so-called ‘transmission bias’ for considerable time, only

the development of new estimation techniques over the past two decades has allowed for the issue to be

tackled in empirical analysis. A number of solutions to the problem have been introduced and the most

popular of these, the dynamic panel estimators by Arellano and Bond (1991) [henceforth AB] and Blun-

dell and Bond (1998) [BB] on the one hand and the ‘structural estimators’ (more on the appropriateness

of this label below) by Olley and Pakes (1996) [OP], Levinsohn and Petrin (2003) [LP] and Ackerberg,

Caves and Frazer (2015) [ACF] on the other, have since been applied in literally thousands of empirical

papers. While initially confined to the skilled econometrician, the application of these methods has been
1Note that we use the terms productivity and TFP interchangeably throughout this article.
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boosted substantially by the availability of pre-coded routines in standard statistical programmes,2 most

prominently in Stata.

Unlike the suggestions in Zvi Griliches’ and Jacques Mairesse’s seminal review of the literature and

Chad Syverson’s more recent survey paper quoted above, many of these applications do not question the

validity of the empirical estimator of choice in the particular data environment studied. Frequently the

superiority of the chosen estimation approach over alternatives other than OLS or Fixed Effects estima-

tion is implicitly assumed, but not questioned or investigated. This is particularly the case with regard

to the ‘structural’ assumptions made in the various estimation techniques, whose validity or failure have

a crucial bearing on performance. Discussion of the empirical implementation is too frequently limited

to a carbon copy of the econometric equations that make up the complex regression technique rather

than a concern for the intuition and validity of the assumptions made in the process. Instead, the dif-

ferent dynamic panel and ‘structural’ estimators are considered to be equally suitable solutions, and the

specific choice among them is reduced to a personal (or reviewer) preference with little reference to the

properties of the data of interest.3

The aims and contributions of this paper are threefold: first, we outline and discuss the econometric

problems related to the estimation of Cobb-Douglas production functions at an intuitive level, focusing

on the transmission bias and the solutions proposed in the recent literature. Our contribution is to

provide a comprehensive discussion of the most popular estimators for Cobb-Douglas micro production

functions, spelling out in detail the crucial assumptions made in the process. We attempt to provide a

much less technical treatment of the different empirical approaches than is common in the literature,

which allows applied researchers with limited interest/insights into the econometric theory to make a

sensible, data-dependent choice over the most appropriate empirical implementation. Given the breadth

of the relevant literature, our review invariably entails choices concerning the estimators that we cover.

Notably, we omit from our discussion the literature on stochastic production frontier analysis (Aigner,

Lovell, and Schmidt, 1977; Schmidt and Sickles, 1984; Sickles, 2005), which deserves separate review

and analysis.

Second, we carry out a practical illustration of the most popular estimators using ‘typical’ observational

firm-level data from a source which is easily accessible and thus widely used. Our approach here is to

investigate the observable properties of the data, to compare empirical results across different estimators,

to interpret the results against the background of the DGP assumptions made by each estimator, and to

consult recent empirical work using similar data to find commonalities in the patterns observed across

estimation techniques. Although our discussion will naturally be informed by the insights from existing

simulation studies and treatments of the topic (e.g. Griliches and Mairesse, 1995; Blundell and Bond,

2000; Ackerberg, Benkard, Berry and Pakes, 2006; van Biesebroeck, 2007; Del Gatto, Di Liberto and

Petraglia, 2011; van Beveren, 2012; ACF, 2015), we prefer to emphasise the practical experience with

real data much more than these previous discussions: our treatment highlights the importance of the data
2DPD estimators: Arellano and Bond’s DPD for Gauss and the Stata commands by David Roodman (xtabond and

xtabond2 – see Roodman, 2008); Olley and Pakes estimator: implementation in Stata by Yasar, Raciborski and Poi (opreg);
Levinsohn and Petrin estimator: implementation in Stata by Levinsohn, Petrin, and Poi (levpet). Ackerberg, Caves, and
Frazer estimator: implementation in Stata by Manjon and Manez (2016); Arnold (2005) provides an informal introduction to
the OP and LP approaches in Stata.

3Data availability may serve as a choice criterion in the sense that the OP estimator requires investment data and LP/ACF
data on intermediate inputs.
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construction process as well as of preliminary descriptive analysis. We emphasise that the data prop-

erties, in combination with the data requirements of standard empirical estimators, raise considerable

concerns over sample selection, and we conclude that the ‘external validity’ of results obtained is at best

tenuous and in many cases not given.

Our third contribution could be seen as a reminder to the applied literature rather than an original

thought: TFP is not an observable variable that can be found on the accounting books of an enterprise

but represents an estimate, the computation of which makes a host of assumptions and generalisations

with ample scope for misspecification and inconsistency. Too many empirical studies begin by regress-

ing TFP on some variable of interest, with the production function results on which these TFP estimates

are based relegated to a footnote, the technical appendix or omitted entirely. This treatment neglects the

important point that the magnitudes of the technology coefficients for labour and capital (and material)

inputs actually mean something in their own right: based on data for labour-compensation we know that

in a typical firm around 60 to 80% of income share accrues to this factor, so that we would expect empir-

ical labour and capital coefficients of around .7 and .3 respectively. Or at least non-negative coefficients,

bounded by zero and unity, with the two (three) coefficients adding up to somewhere near unity. In the

absence of a standard set of residual diagnostic tests for panel regression, we feel that the analysis of

finite samples must pay close attention to the magnitudes of these coefficient estimates and we therefore

make them the centre of attention in our empirical illustration. We furthermore provide some illustrative

analysis of the ‘determinants of TFP’ by regressing TFP estimates on patent data. This exercise reveals

substantial differences in the results depending on which estimator was used to construct the TFP es-

timates and thus vindicates the concerns we raise in this paper. We further highlight that a pairwise

correlation analysis of the various TFP estimates, a commonly-used tool to indicate ‘robustness’ of re-

sults to alternative estimators: this suggests a high degree of commonality, thus creating a false sense of

security over the choice of estimator which, as we illustrate, may not be warranted in practice.

The remainder of this paper is organized as follows. Section 2 provides an overview and discussion

of the existing literature on Cobb-Douglas production function estimation with firm-level panel data.

Section 3 describes the application of the estimators to observational firm-level data and comments

on their relative performance. Section 4 provides some concluding remarks, further pointing to some

relevant issues deserving more attention in applied work.

2 Theory

A standard Cobb-Douglas production function is given by

Yj = F (Aj ,Kj , Lj) = AjK
βk
j Lβlj , (1)

where Yj denotes firm j’s output, commonly measured as value-added,4 Lj denotes labour input (com-

monly headcount or a measure of hours worked – more on actual measurement in Appendix Section

A-2), Kj physical capital stock. Aj is a measure of firm j’s level of efficiency which is unobserved

4A sizeable literature discusses the misspecification of production functions of value-added, capital stock and labour, as
opposed to adopting gross output-based specifications which incorporate material inputs (including energy as well as raw
materials and components). A discussion of this issue would go beyond the scope of this paper; instead we refer to the work
by Bruno (1984) and Basu and Fernald (1995, 1997).
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by the econometrician in the available data. βi with i ∈ (k, l) denotes output elasticities with respect

to factor inputs. The theoretical foundations for this highly parsimonious framework for productivity

analysis are rather compelling (Solow, 1956): unobserved determinants of output are contained in the

productivity term Aj , commonly referred to as Total Factor Productivity (TFP). The specification in (1)

assumes that the effect of Aj on Yj is Hicks-neutral. This implies that in log-linearized form, TFP is

additively separable from the other production factors.

Hence, an empirical equivalent of this Cobb-Douglas function can be represented as

yjt = βlljt + βkkjt + βo + ςjt, (2)

where we have also introduced time subscripts t = 1, . . . , T and denote log values with lower case

letters. In Equation (2), ln(Aj) is decomposed into two elements, βo and ςjt, where the constant βo
represents mean efficiency across all firms and the time-variant ςjt can be regarded as representing

deviations from this mean, capturing (i) unobserved factors affecting firm output, (ii) measurement error

in output and inputs, and (iii) random noise. In the words of Griliches and Mairesse (p. 6: 1995), “ςjt is

the econometrician’s problem, not the producer’s”. We now highlight this issue in greater detail.

2.1 The Transmission Bias Problem

The estimation of (2) encounters several well-known problems. Define ςjt as

ςjt = ω∗jt + vjt = ηj + ωjt + γt + vjt, (3)

which indicates that ςjt contains measurement error vjt and a productivity term ω∗jt (TFP), which is

known to the firm but unobserved by the researcher. Measurement error is commonly assumed to be

serially uncorrelated, but we allow for the possibility of correlation between vjt and the observable

inputs (l, k). A motivation for the latter may be the suggestion that larger firms may have more complex

accounts, thus making it more difficult (and more error-prone) to establish their ‘true’ capital stock.5

The productivity shock ω∗jt can be further split into an element common to all firms and firm-specific

elements. The former represents for instance macroeconomic shocks which affect all firms and industries

in the same way or overall ‘technological progress’ which improves productivity in all firms, ‘a common

tide that lifts all boats’, such as the widespread introduction and improvement of ICT. For simplicity we

use γt to represent these common shocks and average processes and specify that this is defined for

t = 2, . . . , T (i.e. we set γ1 = 0), which implies that βo represents average productivity in the base

period t = 1.6 Finally, the firm-specific productivity term can be further divided into time-invariant and

time-variant components: if certain firms have permanently higher productivity levels, for instance due

to their industrial sector of operation or their historical geographic location, then these time-invariant

productivity effects can be empirically represented with firm fixed effects, say ηj , which are defined for

firms j = 2, . . . , N . In the latter case, ηj represents the permanent deviation of firm j from the reference

5Generally, capital stock is more likely than labour input to be measured with error (Levinsohn and Petrin, 2003), which
using our notation above can be expressed as kjt = k?jt + vjt where ? indicates the observed capital stock.

6This interpretation holds if panels are unbalanced, although in this case βo no longer refers to the base period of the
sample, but the average productivity in the base period of each firm.
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firm productivity level in the base year βo, γt represents the average technological progress (productivity

increase) in the sample over time, and ωjt represents the combined effect of firm-specific deviation from

its own TFP level in the base period and from the common or average technological progress in period t.

This firm- and time-specific effect or shock ωjt can be attributed to “the technical knowledge, the will,

effort and luck of a given entrepreneur” (Marschak and Andrews, p.145: 1944) in a given time period.

We can now rewrite equation (2) to yield

yjt = βlljt + βkkjt + βo + ηj + γt + ωjt + vjt. (4)

The main problem for estimation of specifications such as in Equation (4) arises from the plausible sug-

gestion that firms decide on their choice of inputs (l, k) based on the realized firm-specific productivity

shock (ωjt), which only they observe: a favorable productivity shock to firm j might induce higher levels

of investment whereas a negative shock might induce firms to reduce their productive worker headcount

– the exact timing of these effects and definition of a firm’s ability to ‘adjust’ productive inputs will play

an important part in the estimation strategies reviewed in this paper. If the effect of inputs k and l on

output y cannot be separated from ω by the econometrician, βk and βl are not identified, because even

knowing the (‘true’) population distribution of the data would not allow the econometrician to obtain

unbiased and consistent estimates of the input coefficients. Since ωjt is suggested to ‘transmit to’ the

input choices, this particular problem is known as the ‘transmission bias’.

In the present setup, employing standard least squares estimation by regressing observable output on

observable inputs yields biased and inconsistent coefficient estimates β̂l and β̂k if inputs are not ‘mean-

independent’ from the omitted productivity effect (Marshak and Andrews, 1944). The adoption of time-

and firm-fixed effects cannot solve this problem, given the continued existence of a contemporaneous

correlation between ωjt and the firm’s input choices.7 This correlation is more likely to be present if

inputs can adjust quickly. Commonly, labour is assumed to adjust more rapidly than physical capital

such as machinery, which is accumulated over time and more difficult to be rid of, thus pointing to a

(stronger) bias for the labour coefficient estimate. In this context, note however the general nature of

firm-level panel datasets which commonly investigate/interview firms at annual intervals: ‘contempora-

neous’ correlation thus should not be assumed to imply ‘instantaneous’ changes, but adjustment within

the accounting period. Furthermore, adjustment of labour and capital should not be defined narrowly as

hiring/firing of workers and acquisition/sale of machinery, but may include more flexible strategies of

temporary reduction of working hours and physical capacity levels. In this light the notion of relatively

‘slow’ or ‘rapid’ input adjustment for labour versus capital is arguably less obvious which also suggests

that the (relative) speed of adjustment may vary among different datasets. To understand the direction of

the bias induced in factor input coefficients, consider a firm’s optimisation problem in each time period

under the assumption of perfectly competitive input and output markets

maxπj = pAjK
βk
j Lβlj − wLj − rKj , (5)

where w denotes the wage paid by firm j, r the user cost of capital, p the output price (all of which are
7In fact the firm fixed effects may introduce additional problems for estimation if we suggest that there may be a systematic

relationship between a firm’s productivity level and its idiosyncratic technology shock in period t, e.g. firms with higher (lower)
levels of productivity experience higher (lower) rates of technical progress.
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industry-wide equilibrium prices) and πj is firm profit. Since all terms are contemporaneous we dropped

the time subscript. The corresponding first order condition with respect to labour input is then

Lj =

(
βlpAj
w

) 1
1−βl

K
βk

1−βl
j . (6)

Rewritten in logarithms it can be seen that lj is a function of the productivity shock ςj :

lj =
1

1− βl
(lnβl + ln p+ βo + ςj − lnw + βk ln kj)⇔ lj = f(ςj). (7)

Thus when using OLS to estimate Equation (4) without accounting for the presence of productivity ωjt,

the bias induced by endogeneity between labour and the productivity shock is positive, such that the

labour coefficient estimate will be biased upward (β̂l > βl). Similarly for endogenous capital stock, al-

though the nature of the firm’s problem is then transformed into a dynamic optimization problem.

Additional problems for estimation arise from the fact that productivity shocks to a given firm are likely

to be serially correlated, that is the impact of a positive productivity shock is likely not confined to a

single period. Most generally

ωjt = g(ωjt−s) + ξjt, (8)

where g(·) is some function of past productivity and ξjt is the idiosyncratic productivity shock in pe-

riod t. This consideration gives rise to dynamic empirical specifications which feature lagged terms

of the dependent and independent variables. In addition, differences in productivity across firms may

be substantial and also serially correlated, i.e., there is considerable unobserved heterogeneity which is

persistent over time (Mundlak, 1961). Thus the difference between, say ω1t (firm 1) and ω2t (firm 2)

may be large at any one point in time, but there is an additional problem if this productivity differential

is persistent over time, i.e., the serial correlation in the unobserved differential (ω1t-ω2t); more on the

serial correlation issue and how this is addressed follows below.

These sources of ‘transmission bias’ and related issues aside, we already noted the potential for mea-

surement error in the input variables which leads to the well-known ‘attenuation bias’. This acts as a

downward bias on the factor input coefficients (β̂l < βl, β̂k < βk), which is more commonly suspected

for physical capital. Note that this bias is present even though the measurement error itself is assumed

random: assuming capital k?jt is the true capital stock, which is, however, measured with error (vjt), i.e.,

kjt = k?jt + vjt, then a simple production function yjt = βo + βlljt + βkk
?
jt + ςjt is thus estimated

as yjt = βo + βlljt + βkkjt + (ςjt − βkvjt), where observed mismeasured capital stock kjt is nega-

tively correlated with the error term in parentheses. As pointed out by Griliches and Mairesse (1995),

measurement error can arise from differences in quality of labour input and utilisation of capital across

firms. The severity of the attenuation bias is driven by the variance of the measurement error.

Moreover, all of the estimators discussed below assume homogeneity of the production technology (with

regard to βl, βk) across all firms. If the sample contains firms from different sectors, unaccounted hetero-

geneity may lead to bias in the estimated input coefficients as it will be captured by the error component

and be correlated with the input measures (van Biesebroeck, 2007). For this and other reasons (related to

firm fixed effects in the structural estimators detailed below) it has become common practice to estimate

production functions at a more narrowly-defined sectoral level, rather than for ‘total manufacturing’,
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using ‘thinner and thinner slices’ of data (Griliches and Mairesse, 1995). Not all researchers agree that

this solves the problems arising from heterogeneity and fixed effects, with Griliches and Mairesse (1995)

concluding that “the observed variability-heterogeneity does not really decline as we cut out data finer

and finer. There is a sense in which different bakeries are just as much different from each other, as the

steel industry is from the machinery industry” (p. 22).

Finally, firm-level panel data commonly exhibits a non-negligible share of firms entering and exiting the

market in any one period, introducing a ‘selection problem’ in the estimation equation. More specifi-

cally, assume that the probability of firm exit is a function of both unobserved productivity and observed

capital stock, meaning firms that do not survive are likely to be those with low levels of capital stock and

low productivity. For instance, a large negative productivity shock may induce exit, but not before the

firm, in its struggle for survival, has cut down on investment, leading to (relatively) lower capital stock.

In reverse, those firms that survived and stayed in the market and thus in the sample are likely made up

of two types: those with high capital stocks, which are able to survive regardless of their productivity

levels, as well as those who have small capital stocks but pull through on the back of high productivity

levels. Due to the latter the sample of survivors will be characterised by a negative relationship between

productivity ςj (high) and capital stock (low). This ‘attrition’ effect leads to a downward bias in the

capital coefficient (β̂k < βk). Empirical applications will have to deal with the fact that firms exit for

a number of reasons other than failure, such as mergers and acquisitions. As a result, in practice, the

impact of selection on the relationship between productivity and capital stock is not easily character-

ized. In the following, we largely abstract from heterogeneity and the selection problem and focus on

the transmission bias, although we do not imply that the former can be neglected in applied work.

2.2 Tackling the transmission bias

Several solutions for the endogeneity of input choices with regard to unobserved productivity have been

proposed in the literature – note that all of the methods described below assume panel data at the firm

level (large N , small T ). Section 2.2.1 introduces the work by Arellano and Bond (1991) and Blundell

and Bond (1998) on ‘dynamic panel estimators’, which is followed by a set of three ‘structural’ estima-

tors in sections 2.2.2 to 2.2.4. Note that we use this terminology only as convenient labels for the two

groups of estimators although we do not imply that the dynamic panel estimators are ‘less structural’

than the ‘control function’ approaches (to use another label at times attached to this group of estima-

tors). In fact, Bond and Söderbom (2006) derive similarly ‘structural’ foundations to the dynamic panel

data estimators – see section 2.2.4. More generally, one could suggest that a truly structural regression

approach derives first order conditions from a behavioural model and estimates them. The ‘structural’

estimators the authors merely appeal to theory to derive general assumptions under which their econo-

metric estimators deliver consistent estimates, which is conceptually the same as identifying valid and

informative instruments, be it in a Generalised Method of Moments (GMM) framework or indeed any

standard IV regression.

Our discussion largely abstracts from the impact of measurement error (vjt). The empirical specification

discussed throughout the remainder of this article is thus

yjt = βlljt + βkkjt + βo + ηj + γt + ωjt. (9)
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Our discussion below focuses on the more recent empirical production function estimators and we rel-

egate discussion of more traditional practices (transformation of the estimation equation, standard IV

using ‘external’ (i.e. not lagged variables or lagged transformed variables) to the appendix. The former

approach is unlikely to convincingly address transmission bias arising from time-variant, firm-specific

productivity shocks, whereas no clear contenders for ‘external’ instruments have emerged in the produc-

tion function literature.

2.2.1 Dynamic panel estimators with efficient ‘own’-instrumentation

Due to the practical difficulties of finding reliable instruments in firm-level panels, the econometric

literature turned toward the single guaranteed supply of informative instruments: past values of the re-

gressors themselves. The GMM estimator developed by Arellano and Bond (1991 [AB]) has its origin in

the study of dynamic equilibrium relationships more generally, but firm-level production functions are

among the most common applications for this approach. The basic idea of the estimator revolves around

the time-series properties of unobserved productivity ωjt, which is assumed to display persistence over

time, leading to serial correlation in the unobservables. The empirical equation is transformed to explic-

itly model this persistence: for instance, assuming a first order autoregressive process for ωjt8

ωjt = ρωjt−1 + ξjt |ρ| < 1 ξjt ∼MA(0) (10)

will lead to the dynamic autoregressive distributed lag (ARDL) regression model, which adds lagged

levels of the dependent and independent variables to the right-hand side of equation (9)

yjt = ρyjt−1 + βlljt − ρβlljt−1 + βkkjt − ρβkkjt−1 (11)

+(1− ρ)(β0 + ηj) + (γt − ργt−1) + ξjt + {vjt − ρvjt−1}.

This representation9 clearly indicates socalled ‘common factor restrictions’, whereby the coefficients

on lagged regressors are nonlinear combinations of the coefficients on yjt−1 (ρ) and on the respective

contemporaneous factor input (βl, βk). The unobserved productivity term ωjt is no longer part of the

regression equation due to the transformation carried out, although the productivity shock ξjt is still

present. The term in { } disappears if there is no measurement error. In macroeconometric models, the

coefficient on the lagged dependent variable can give insights into the speed of adjustment of the system

(1 − ρ) and is therefore often a focus of attention. In the microeconometrics of firm production the

dynamic specification may be a crucial requirement for the identification of the parameters of interest,

in our case βl and βk, whereas the dynamics themselves are not of particular interest. A more general,

unrestricted dynamic representation of (11) is

yjt = π1yjt−1 + π2ljt + π3ljt−1 + π4kjt + π5kjt−1 + α?j + γ?t + ejt, (12)

where α?j = (1 − ρ)(β0 + ηj), γ?t = (γt − ργt−1), ejt = ξjt + {vjt − ρvjt−1} and the common factor

restrictions can be defined as π3 = −π1π2, π5 = −π1π4. Equation (12) can be tested for the implied
8In micro data stationarity (|ρ| < 1) is commonly assumed, although there is a small literature on unit root testing in short

panels, see Bond et al. (2005).
9Equation (11) is easily derived by solving the standard production function in (9) for ωjt and then plugging the righthand

side into equation (10) (lagged one period for ωjt−1).
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restrictions and if not rejected these can be imposed employing a ‘minimum distance’ or nonlinear least

squares estimator. If common factor restrictions are rejected, the long-run solution of the model can be

backed out as nonlinear combinations of the estimated coefficients

y =
α̂?j

1− π̂1
+

(
π̂2 + π̂3
1− π̂1

)
l +

(
π̂4 + π̂5
1− π̂1

)
k +

γ̂?

1− π̂1
(13)

using the Delta method to compute corresponding standard errors.10

Merely transforming the production function equation from a static to a dynamic one does not solve the

transmission bias issue: using OLS, the factor input variables are contemporaneously correlated with

the productivity shock ξjt (contained in ejt) and a possible fixed effect in productivity (contained in α?j );

furthermore the lagged dependent variable is also correlated with the omitted fixed effect. Application

of the fixed effects/‘within’ estimator suffers from ‘Nickell-bias’ (Nickell, 1981), which can be shown

quite intuitively to lead to a downward bias in the coefficients if T is small: focusing for simplicity

on yjt−1 and ξjt we consider the within-transformation applied to equation (12). We can now see that

there is systematic correlation between the transformed terms ỹjt−1 and ξ̃jt (highlighted in bold and

underlined):

ỹjt−1 = yjt−1 −
1

(T − 1)

(
yj1 + yj2 + . . .+ yjt + . . .+ yjT−1

)
(14)

ξ̃jt = ξjt −
1

(T − 1)
(ξj2 + ξj3 + . . .+ ξjt−1 + . . .+ ξjT ) . (15)

The negative correlation between components yjt−1 in (14) and (T − 1)−1ξjt−1 in (15), highlighted in

bold, as well as ξjt in (15) and (T − 1)−1yjt in (14), underlined, dominate the other, positive corre-

lations between contemporaneous y and ξ components.11 Thus the fixed effects estimator is biased in

the dynamic regression equation as long as T remains small.12 Despite their bias in dynamic empirical

equations of short T , it is nevertheless informative to investigate results for both the OLS and fixed ef-

fects estimators, since the anticipated pattern across the estimates creates upper and lower bounds for the

‘true’ parameter value, such that ρ̂WG < ρ < ρ̂OLS . A number of bias-adjusted fixed effects estimators

for dynamic panels are available in the literature, e.g. Kiviet’s (2005) bias-corrected LSDV,13 although

bias corrections to the short-run coefficients may worsen the bias of the long-run coefficient.

This class of estimators seeks to use past values of the regressors (now including the lagged dependent

variable) as instruments to address the transmission bias, building on explicit assumptions about the

unobserved components of equation (12): α? and ejt (like in the static OLS and FE models we can

account for the presence of common shocks γ?t by including year dummies in the dynamic estimation

equation). The information about valid instruments can be expressed in ‘moment restrictions’, which
10This is easily implemented in Stata using the nlcom command. The validity of the confidence intervals and t-statistics

computed is, however, far from clear: the distribution of the computed long-run coefficients is heavily skewed to the right
because estimates for π̂1 close to unity produce very large long-run values. In practice this issue is commonly ignored.

11The reason for this is that in the latter case both terms are always deflated by (T − 1).
12Judson and Owen (1999) employ Monte Carlo simulations to indicate that this bias can still be quite substantial even for

moderately long T – this paper however investigates macro panel data. For balanced micro panel data, Bun and Kiviet (2003)
discuss the size of the bias in more detail, while Bruno (2005) investigates the same in unbalanced panels.

13The estimator is coded in Stata as -xtlsdvc-.
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represent the basis for the GMM estimation approach developed by Hansen (1992) – more details with

reference to the AB GMM below. The availability of these moment conditions depends on the assump-

tions made about the unobserved error components and the righthand-side variables yjt−1, ljt and kjt.

The following assumptions are commonly employed:

(i) the productivity level α?j is correlated with the input choices ljt and kjt ∀ t, such that firms with

higher productivity levels are assumed to have higher levels of labour and capital inputs; lagged

output yjt−1 is correlated with productivity levels α?j by construction;

(ii) the productivity shock ξjt is serially uncorrelated and furthermore uncorrelated with the produc-

tivity level α?j (the latter assumption is redundant in the AB approach);

(iii) the productivity shock ξjt is uncorrelated with input choices made before time t. Given the timing

assumption about capital stock (input choice of capital ‘investment’ is made in period t − 1, but

capital stock does not increase until period t) the latter implies that the productivity shock ξjt is

uncorrelated with actual capital stock kjt in the same time period t;

(iv) the initial conditions for output yj1 are uncorrelated with later ξjt.

Hence, ljt and kjt are assumed to be endogenous with respect to firm productivity levels, ljt to be

predetermined and kjt to be endogenous with respect to ξjt, and the productivity shock ξjt to be strictly

exogenous with respect to the productivity level. The first observation of output yj1 is predetermined

with respect to the productivity shock ξjt. These assumptions translate into moment restrictions which

act as summary explanations of how the parameters of interest β∗ = {βl, βk} are identified. The

moment restrictions are formulated with the underlying DGP in mind and are thus ‘population moment

restrictions’. The GMM estimator is then obtained by means of an optimisation involving the sample

equivalents of the moment restrictions which in turn are functions of the parameter estimates β̂∗.

A sample equivalent for the set of r moment conditions for equation (11) can be written as

bN (β∗) =
1

N

∑
j

Z ′jξj(β
∗)

 , (16)

where we stacked variables over time such that Zj is T × k for k ‘instruments’ (we detail below what

these constitute). For notational ease we assume no measurement error in this exposition. When formally

written as a minimisation problem equation (16) is also referred to as the ‘criterion function’. If our

number of moment restrictions r is equal to the number of endogenous variables q we obtain a ‘just

identified’ solution (estimate) for β∗ by minimising bN (β∗). In the ‘overidentified’ case where more

moment restrictions are available for the same number of parameters (r > q) the solution is obtained

not by minimising bN (β∗) but a weighted version of its square (‘quadratic distance’)

β̂∗GMM = arg minβ∗JN (β∗) where JN (β∗) = bN (β∗)′WNbN (β∗). (17)

Now a ‘family of GMM estimators’ using the same moment conditions but different ‘weight matrices’

WN are available, all of which lead to consistent estimates for β∗, but with different efficiency. This

gives rise to a ‘2-step’ version as well as a ‘1-step’ version to determine the efficient estimator: in the
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former we proceed by first estimating a consistent β̂∗ using some weight matrix, which yields consistent

residuals ξ̂j . These are then employed to construct the optimal weight matrix

WN =

 1

N

∑
j

Zj ξ̂j ξ̂j
′
Zj

−1 . (18)

Note that in finite samples we introduce variation in the first step by having to estimate WN which

makes inference in the second step unreliable (Pagan’s (1984) generated regressor problem). Windmeijer

(2005) provides a finite sample correction for this which is commonly used in practice. The ‘1-step’

version assumes homoskedastic errors and therefore can apply a ‘known’ weight matrix, thus dispensing

with the first step. Alternative transformations to those applied in the following, as well as quadratic

moment restrictions and further assumption about variable and error properties create a host of additional

moment conditions which can be applied in estimation.

JN (β∗) forms the basis for tests of overidentifying restrictions referred to as Hansen, Sargan or J tests,

as well as the Difference Sargan test,14 which is used to test the validity of moment conditions.

We now discuss the two most popular GMM production function estimators in some more detail. By

allowing unobserved firm-specific effects to be correlated with inputs, it is possible to take account

of time-invariant unobserved heterogeneity. With reference to the AB ‘Difference GMM’, the time-

invariant productivity levels ηj (in the dynamic equation contained in α̃j) can be dropped from the

model if we specify a production function equation in first differences

∆yjt = π1∆yjt−1 + π2∆ljt + π3∆ljt−1 + π4∆kjt + π5∆kjt−1 + ∆γ?t + ∆ejt (19)

thus making assumption (i) above redundant since α?j is no longer contained in the estimation equation.

Similarly for the second part of assumption (ii). In the AB estimator lagged levels of the covariates act

as instruments for the regressors in differences at time t. The first-difference moment conditions for

endogenous labour and the lagged dependent variable are then

E[yjt−s4ejt] = 0 for t = 3, . . . , T and s ≥ 2 (20)

E[ljt−s4ejt] = 0 for t = 2, . . . , T and s ≥ 2. (21)

Assuming that capital is predetermined yields

E[kjt−s4ejt] = 0 for t = 2, . . . , T and s ≥ 1. (22)

This suggests that yjt−3, ljt−2 and kjt−1 and earlier realisations can be used as instruments for ∆yjt−1,

∆ljt and ∆kjt in Equation (19) – in the present setup we thus would require a minimum of Tj = 4.15

Assuming that stock variables such as output, labour or capital stock are sufficiently persistent over
14Subtle differences apply: at least within Stata Sargan refers to the test applied to the minimised JN of the one-step

version, whereas Hansen or Hansen-J refers to the minimised JN of the two-step version, with the latter robust to serial
correlation and heteroskedasticity in the residuals.

15Note that the ‘quasi-fixed’ nature of capital is not a requirement here, but an assumption: instead of predetermined, capital
stock can be assumed to be endogenous, such that productivity shocks in period t affect capital stock in the same period. The
moment restrictions for capital can then be written as above but for s ≥ 2.
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time to satisfy the assumption of informativeness, the econometrician can argue that the firm’s labour

and capital stock values at time t − 2 were chosen prior to the observation of the productivity shock

at time t − 1, thus making them valid instruments. In order to increase the precision of the estimator

and allow for the application of testing procedures informing about instrument validity it is common

practice to employ not just one lagged value for each time-series observation of each variable, but a

whole set of lagged values. In practice the informativeness of these lagged instruments deteriorates

and the estimation algorithm therefore employs optimal weights to each of the moment restrictions

employed. The ‘overfitting bias’ arising from use of too many moment restrictions is typically not an

issue in short T panels.16

If the output, labour and capital stock variables are highly persistent, the ‘Difference GMM’ instrumen-

tation approach suffers from ‘weak instruments’ and yields substantial finite-sample bias (Griliches and

Mairesse, 1995): the lagged levels are poor determinants of the differences which are dominated by the

random element.17 Blundell and Bond (1998) [henceforth BB] develop the ‘System GMM’ estimator

which avoids the bias arising in the Difference GMM when variables are highly persistent. Based on

the assumption that variables in first-differences are uncorrelated with unobserved firm-specific effects,

there are additional moment conditions

E[∆kjt−s(α
?
j + ejt)] = 0 (23)

E[∆ljt−s(α
?
j + ejt)] = 0 (24)

for s ≥ 1. This implies that appropriately lagged variables in first difference can act as instruments in

the original, untransformed production function in levels, equation (9). The validity of the additional

moment conditions depends on the assumptions about the initial conditions of the variables yj1, lj1, kj1
as well as the absence of serial correlation in the errors. In general, it is well-known that more moment

conditions cannot harm efficiency, although in many circumstances additional restrictions can be shown

to be ‘redundant’, in the sense that they do not increase the asymptotic efficiency of estimation for the

parameter(s) of interest (Breusch, Qian, Schmidt, and Wyhowski, 1999).

The ‘System GMM’ estimator requires stationary initial conditions:

E
[
∆yj2α

?
j

]
= 0 (25)

for j = 1, . . . , N , i.e., whatever drives the initial value yj1, it is unaffected by the fixed effect α?j . This

also implies that the economy is in long-run equilibrium. Similarly for ljt and kjt. The joint use of

difference and level moment conditions results in a ‘system’ of equations and gives rise to the System

GMM estimator, which Blundell and Bond (2000) have shown in Monte Carlo simulations to yield

consistent estimates of βl and βk. However, Bun and Windmeijer (2009) question whether the System

GMM estimator indeed solves the weak instrument problem of the AB estimator: in circumstances

in which the variance of firm-specific unobserved heterogeneity is large relative to the variance of the
16A sign of ‘overfitting’ is that the p-value for the test for joint instrument validity tends toward unity (Bowsher, 2002).
17Take yt as highly persistent, i.e. yt = %yt−1 + ζt with % close to unity. The first difference of this variable yt − yt−1 =

∆yt = (%− 1)yt−1 + ζt is then dominated by the ζt component, whereas the yt−1 element is discounted heavily by (%− 1).
Rewriting this as a function of yt−1 yields ∆yt = (% − 1)(%yt−2 + ζt−1) + ζt: if for instance % = 0.95 then the coefficient
on yt−2 would be (% − 1)% = −0.0475 which would mean this variable is drowned out by the random ‘noise’ of the two ζt
components.
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idiosyncratic productivity shocks, instruments for the levels equation are weak, resulting in a worse

performance of the BB relative to the AB estimator for given persistence in the data (ρ). Moreover,

the problem of losing valuable variation in the data due to first-differencing equally applies to the AB

and BB estimators (Wooldridge, 2009). Finally, the instruments added in the System GMM estimator,

lagged differences instrumenting for levels, may not be uncorrelated with the fixed effect component of

the error term, depending on the assumption made regarding the structure of the endogeneity problem

(Greenstreet, 2007).

One practical advantage of the above GMM estimators over the ‘structural’ estimators discussed below

is often missed in empirical applications, namely that all key specification assumptions made can be

tested in the data. Different sets of assumptions lead to different sets of moment restrictions, which can

be individually tested for validity, with the sample size being the only constraint since all tests are valid

asymptotically.18 Thus major assumptions relating to the correlation between factor inputs and pro-

ductivity fixed effects ηj , as well as pertaining to the strictly exogenous, predetermined or endogenous

nature of factor inputs with respect to the productivity shock ξjt and the presence of measurement error

vjt can be investigated by the researcher.

The use of past differences and levels of input as instruments for current input choices can be justified

from a theoretical point of view as shown in Bond and Söderbom (2005) [henceforth BS], providing a

‘structural’ motivation for the dynamic panel estimators. BS show that input parameters are identified

when gross output is used as a measure for firm output based on the assumption that all inputs are subject

to adjustment costs which differ across firms. The underlying intuition is that individual firms’ optimal

change in their input choice is different for inputs with different adjustment costs. This differentiated

response generates independent variation across firms in the levels of chosen inputs and therefore allows

identification. BS point out that this variation can be predicted from lagged information if inputs are

assumed to be dynamic, allowing estimation based on IVs and in a panel setting the use of Difference

and System GMM estimators. Past levels contain information on current levels because adjustment costs

introduce dependence of current input levels on past realisations of productivity shocks. Importantly, this

is a purely structural assumption and does not require any specific functional form for adjustment costs.

We provide a more formal discussion of their argument in an Appendix.

2.2.2 ‘Structural’ estimators (i): Olley and Pakes (1996)

Before these recent theoretical foundations in the case of production functions justified the use of lagged

values as instruments, the GMM estimators were essentially based on assumptions about the evolution

of observable and unobservable processes over time and not explicitly derived from a structural model

of firm behaviour. Olley and Pakes (1996) were the first in a line of authors adopting an explicit model

for the firm’s optimization problem to derive their production function estimator. Put simply, the trick

employed by OP to side-step the endogeneity problem in the production function equation is to use

information about observed investment ijt to proxy for unobserved productivity ωjt and to apply a

control function estimator.

OP assume that kjt and ωjt are firm-specific state variables in the firm’s dynamic programming problem.

18In Stata this is enabled in the xtabond2 command by allowing for sets of gmm(·) entries for different moment conditions.
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The Bellman equation corresponding to the firm’s dynamic programming problem is written as

Vjt(kjt, ωjt) ≡ max{πjt(kjt, ωjt)− cj(ijt) + θE[Vt+1(kjt+1, ωjt+1)|kjt, ωjt, ijt]} (26)

where kjt+1 = (1− δ)kjt + ijt is the law of motion for capital accumulation, δ is the depreciation rate

and ijt denotes firm j’s investment in physical capital at time t. Investment is chosen at time t and adds

to the capital stock at time t+1.19 The solution to the Bellman equation in (26) gives an investment pol-

icy function that depends on (unobserved) productivity as well as physical capital, ijt(kjt, ωjt). Labour

is left out of the investment equation because it is a ‘non-dynamic’ input by assumption, implying that

the levels of labour input chosen today do not affect the cost of labour (and therefore profits) tomor-

row: labour is a fully flexible factor input, which can be adjusted ‘instantaneously’ (within period t)

after observing ωjt. Crucially, firm investment is assumed to be strictly increasing in both capital stock

and productivity (referred to as the ‘monotonicity assumption’), implying that ceteris paribus firms with

higher kjt or ωjt always invest more. Furthermore, it is assumed that ωjt is the only unobservable driving

the investment decision, a condition referred to as ‘scalar unobservable’. Ackerberg, et al. (2015) note

that the scalar unobservable assumption rules out unobserved differences in investment prices across

firms, other unobserved state variables, and any other unobserved factors influencing investment but

not production. The scalar unobservable assumption also rules out differential adjustment costs across

firms, which is somewhat questionable given the suggestions by BS. Finally, when making investment

decisions in period t + 1 any realizations of ωjt prior to time t are not included in the investment func-

tion due to the OP assumption that productivity evolves according to an ‘exogenous first-order Markov

process’, meaning that a firm builds expectations about its productivity at time t+ 1 solely based on its

productivity levels observed at time t.20 Thus we can assume most generally that productivity evolves

following ωjt = g(ωjt−1) + ξjt, where ξjt is the random ‘productivity shock’. Given some of the earlier

assumptions made, Ackerberg, et al. (2015) remark that a first-order Markov process is indeed the only

possible evolution process for productivity in the OP framework. Conditional on functional form restric-

tions (the investment function is continuous in kjt and ωjt) and provided investment is positive (ijt > 0)

the investment equation can be inverted to yield an expression for productivity ωjt as a function of the

state variable, physical capital, and the control variable, investment: ωjt = ft(ijt, kjt). Thus condi-

tional on a host of theoretically motivated (‘structural’) assumptions and provided the implementation is

sufficiently flexible (specify ft(·) as nonlinear function) this affords us a representation for unobserved

productivity based on observable variables.

In practice the OP production function estimator is implemented in two steps: first, by regressing output

yjt on labour input ljt and a nonparametric function φ of (kjt, ijt) proxying firm productivity

yjt = βlljt + φjt(ijt, kjt) + εjt, (27)

where φjt(ijt, kjt) = βo + βkkjt + ft(ijt, kjt).

ft(·) is indexed by time to take account of changes in state variables (ijt, kjt) due to changing factor

prices or market structure common to all firms in each time period. This can account for the common
19This assumption, i.e., the dynamic nature of capital input, is used to identify the capital coefficient βk.
20The ‘exogenous’ label simply means that productivity is treated as determined by factors outside the model, i.e., like

manna from heaven. More formally, Fω ≡ F (ωjt|ωjt−1), ωj ∈ Ω, where F (ωjt|ωjt−1) is stochastically increasing.
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shocks γt in our general framework in equation (9). Labour ljt is assumed to be exogenous with respect

to εjt and its estimate from (27) is unbiased since the unobserved productivity, with which it is con-

temporaneously correlated, is represented by φjt(·). Equation (27) is a ‘partially-linear’ equation which

can be estimated using semiparametric methods (Robinson, 1988). OP suggest estimation based on a

third-order polynomial series expansion, but any other flexible estimation approach would be equally

valid. In order to allow for the time-variation in φjt the polynomial terms need to be interacted with

time dummies. The first stage regression solves the simultaneity problem between k and ωjt and yields

unbiased and consistent estimates β̂l for the labour coefficient and φ̂jt(ijt, kjt) for the nonlinear function

accounting for capital stock and productivity.

In the second step, OP use these estimates to run a regression of yjt−β̂lljt on φ̂jt(·) and kjt, which yields

an unbiased estimate β̂k for the capital coefficient. The rationale for this can be developed as follows: at

time t, from the econometrician’s perspective, capital stock k is predetermined and thus deterministic,

since the investment decision was made in the previous period. Similarly for average productivity across

firms. Expected output at time t can therefore be written as

E[yjt − βlljt|kjt] = βkkjt + E[ωjt|ωjt−1] (28)

From the assumption of a Markov process for productivity and the inverted investment function in (28)

above, we can deduce that

E[ωjt|ωjt−1] = g(ωjt−1) + ξjt = g(φjt−1(ijt−1, kjt−1)− βo − βkkjt−1) + ξjt, (29)

meaning expected productivity at time t is some function g(·) of observed productivity at time t − 1.

From our first stage we know that E[βl] = β̂l. All of these insights allow us to rewrite (28):

yjt − β̂lljt = βkkjt + g(φ̂jt−1(ijt−1, kjt−1)− βo − βkkjt−1) + ξjt + εjt, (30)

recalling that ξjt is the random shock to productivity ωjt. Due to the fact that ξjt and ljt are contempora-

neously correlated, OP cannot include ljt on the righthand side of the production function to be estimated

and instead subtract β̂lljt from their measure of output on the lefthand side using the coefficient estimate

obtained in the first stage regression.

In summary, capital stock in equation (30) is exogenous with respect to the error term (E[kjt(ξjt+εjt)] =

0) since εjt is i.i.d. and the level of kjt was determined in the previous period and can therefore not have

been affected by the change in productivity in the present period (ξjt); productivity ωjt is proxied by

g(·)+ ξjt, where E[ξjt] = 0; labour input is accounted for and does not cause any endogeneity problems

by the output-adjustment on the lefthand side. Thus in the second step equation (30) can be estimated

using non-linear least squares (NLLS)21 to obtain an unbiased estimate for βk – this estimation approach

is required due to βk entering the equation twice and in combination with other parameters. The function

g(·) (implemented via higher order polynomials) is merely acting as a control and its estimates in the

second stage are not of interest.

The OP model can be extended to incorporate firm exit, in which case an additional stage is entered be-
21In Stata this is done using the nl command.
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tween the two described above, where a probit regression (exit, non-exit) is fitted on a nonlinear function

of ijt, kjt using the same argument of proxied productivity as in the OP first stage. The predictions from

this intermediate stage are then entered in the g(·) function in the above second stage. This aside, the

researcher may choose to investigate gross output instead of value-added, or may add further covariates

such as firm age in the empirical equation.

Note that one element of the general production function model in equation (9) is notable for its ab-

sence in the OP approach: the presence of firm-level fixed effects in productivity ηj . As Griliches and

Mairesse (1998, notation adjusted) point out, “net investment ijt would depend primarily on the ‘news’

in ωjt and not on its level”. Thus the OP estimator (and the other structural approaches building on

an inverse productivity function) cannot account for these time-invariant firm-level productivity effects,

which leads to potential bias in the production function estimates. In practice researchers seek to reduce

the impact of this bias by running sector-specific regressions, i.e. by ‘slicing the data’, thus avoiding the

impact of the most glaring productivity differences across industries.

Finally, Wooldridge (2009) points out that the OP model can be estimated in a single step, which may

bring about efficiency gains. This approach is discussed in more detail in the appendix.

2.2.3 ‘Structural’ estimators (ii): Levinsohn and Petrin (2003)

Building on OP, Levinsohn and Petrin (2003) proposed the use of intermediate input demand instead of

investment demand as a proxy for productivity ωjt. This implies that intermediate inputs are chosen at

time t once ωjt is known to the firm. The same applies to labour input choices, which in turn implies

that labour and intermediate inputs are chosen simultaneously and labour maintains its assumed non-

dynamic/flexible character. The simultaneity in the timing of a firm’s choice of intermediate inputs and

labour, however, avoids the need to allow labour to affect the optimal choice of intermediate inputs.

Intermediate inputs (e.g. materials, fuels, electricity) are readily available in most firm-level datasets

since value-added is commonly constructed from gross output and intermediate inputs (at least as an

aggregate) by the researcher.

The use of intermediate inputs as proxy addresses some of the concerns raised against the OP approach,

which hinge on the assumptions of scalar unobservable, monotonicity and non-zero investment series,

all of which are required for the inversion of the investment equation. In practice, investment data is

frequently either missing for a large number of firms or firms report zero investment, which eliminates

these observations from the estimation equation. Since we cannot assume that these data are missing at

random or that firms randomly opt for zero investment in certain years, the required sample reduction

when applying the OP procedure is of at least similar concern to the non-random exit of firms from the

market. In the LP procedure, intermediate inputs (electricity, material inputs) are modelled as a function

of the two state variables ωjt and kjt akin to the use of investment in the OP approach. Since intermediate

inputs are only zero if the firm stops operating, this choice avoids the substantial cull of observations

in the OP approach. Furthermore, the monotonicity assumption that firms with larger capital stocks

or productivity employ higher levels of intermediate inputs is somewhat more defendable. Note also

that the presence of adjustment costs to investment implies that a firm’s optimal investment path is

not characterised by a smooth correspondence to productivity shocks since investment is now more
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lumpy.22 The LP approach continues to rely on the scalar unobservable and monotonicity assumptions.

In particular, the monotonicity assumption, i.e., that ceteris paribus a firm that experiences a higher ωjt
always uses more intermediate inputs, may be violated if a more productive firm chooses to cut waste

leading it to economise on inputs.

The production function to be estimated by LP is

ojt = βo + βlljt + βkkjt + βmmjt + ωjt + εjt, (31)

where mjt denotes intermediate inputs. Note that LP use (log) gross output ojt as dependent variable,

although they also provide a value-added approach in an earlier application of the idea.23 LP specify

demand for intermediate inputs as

mjt = mjt(kjt, ωjt), (32)

where demand is required to be monotonically increasing in ωjt, similar to the assumption by OP re-

garding investment. A proxy for unobserved productivity by the inverse demand function

ωjt = ft(kjt,mjt). (33)

The first stage of the production function is then rewritten as

ojt = βlljt + ζjt(kjt,mjt) + εjt, (34)

where ζjt(kjt,mjt) = βo + βkkjt + βmmjt + ft(kjt,mjt).

This equation is implemented in the same way as the first stage regression in OP. Given consistent

estimates β̂l and ζ̂jt, LP proceed in the same fashion as OP to identify βk in the second stage

ojt − β̂lljt = βkkjt + βmmjt + g(ζ̂jt−1 − βo − βkkjt−1 − βmmjt−1) + ξjt + εjt. (35)

In addition to βk the LP procedure also needs to estimate the βm coefficient in the second stage. Since

mjt is not orthogonal with respect to ξjt, LP instrument current intermediate input levels mjt through

one-period lagged levels mjt−1. All of this is formulated within a GMM framework, such that LP come

up with two independent population moment restrictions with respect to k and m

E[kjt(ξjt + εjt)] = E[kjtξjt] = 0 (36)

E[mjt−1(ξjt + εjt)] = E[mjt−1ξjt] = 0, (37)

where the second moment restriction spells out the instrumentation strategy for mjt in the second stage.

LP furthermore specify a set of overidentifying restrictions for the second stage regression, using lags of

all input variables (in case of intermediate inputs this impliesmjt−2) – this is done to increase efficiency

of the estimator and to allow for the testing of overidentifying restrictions. Yet, it is important to bear in

mind that adding further lags reduces the sample size by limiting the available time series.
22The ‘non-convexity’ of adjustment costs violates the smoothness (monotonicity) assumption imposed by OP.
23Levinsohn and Petrin (1999) specify a value-added model where intermediate inputs are only used to proxy for unob-

served productivity, thus only enter the inverted material demand equation ωjt = ft(kjt,mjt). No instrumentation of mjt is
necessary in the second stage since this variable does not enter the regression.
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The underlying identification assumption is that lagged levels of a firm’s intermediate inputs are infor-

mative instruments for current levels. This is likely to be the case despite the ‘perfectly variable’ nature

of intermediate inputs, if there is some persistence in m, i.e., mjt = ρmjt−1 + vjt.

In summary, OP and LP achieve identification of βl through structural assumptions. OP assume that

labour input is non-dynamic, i.e., a firm’s choice of l at time t − 1 does not affect the cost of input

use in time t. This assumption is required as otherwise a firm’s choice of labour in t − 1 would affect

its choice of investment and hence identification of ljt would not be achieved from using the inverse

investment function as a proxy for ωjt. In the case of LP, labour input is also non-dynamic, but more

crucially, ljt and mjt are assumed to be ‘perfectly variable’ inputs, i.e., they are chosen by the firm once

ωjt is observed (but within the same time-period). If intermediate inputs were chosen before observing

ωjt the inversion of the intermediate goods demand function would not be possible. Identification of

kjt is also achieved by using a timing assumption, whereby in both estimators the moment condition

E[kjt(ξjt+ εjt)] = 0 holds if capital is ‘quasi-fixed’, i.e., if its level is determined prior to observing the

productivity shock.

2.2.4 ‘Structural’ estimators (iii): Ackerberg, Caves and Frazer (2015)

ACF point out that the first stage in the OP and LP procedures fails to identify the labour coefficient βl
except under special assumptions.24 The reason for this is that labour demand ljt is a function of the

same state variable ωjt as investment or intermediate inputs and therefore does not vary independently

from the inverted investment or intermediate input functions used to proxy for unobserved productivity.25

In the respective first stage regressions

yjt = βlljt + {βo + βkkjt + ft(ijt, kjt)}+ εjt (38)

ojt = βlljt + {βo + βkkjt + βmmjt + ft(kjt,mjt)}+ εjt, (39)

labour input and the nonparametric functions proxying unobserved productivity are perfectly collinear.26

Collinearity is this context prevents identification because even the population distributions of labour in-

put and the productivity proxy do not vary independently from each other. Hence, increasing sample

size does not mitigate the problem. In the LP approach this implies that ljt is a time-varying function

in intermediate inputs and capital. Obviously, this in turn implies that ljt does not vary independently

from ft(mjt, kjt), hence βl is not identified. ACF discuss a number of alternative DGPs for labour de-

mand ljt which may potentially ‘save’ LP’s identification strategy, but conclude that there is no credible

DGP available given the restriction imposed by the assumption of ‘perfect variability’ of labour and
24For the LP procedure, there are two alternative sets of assumptions that allow identification: first, intermediate inputs are

chosen before labour input but while productivity levels remain constant. At the same time, firms experience an i.i.d. price
or demand shock which is serially uncorrelated, has sufficient variation across firms and shifts labour input choices. Second,
there must be serially correlated optimisation error in the measure for labour while no measurement error is allowed in the
measure of intermediate inputs. For OP, there is an additional – somewhat more realistic – scenario that allows identification:
firms choose labour based on an imperfect guess of their productivity levels before they fully learn about the realisation of the
productivity shock.

25BS make a similar, albeit more sweeping point with regard to production functions that use gross output instead of value-
added. They show that in Cobb-Douglas production functions parameters of flexible non-dynamic inputs (labour, intermediate
inputs) are not identified through cross-section variation if all firms face common input prices and inputs are chosen optimally.

26More generally in the BS critique: if firms optimally choose ‘perfectly variable’ inputs in a perfectly competitive setting,
the input parameters are not identified due to perfect collinearity in all inputs. The ACF critique applies to a special case of the
BS critique, i.e., to a situation in which one input (k) is dynamic and therefore not ‘perfectly variable’, but the others are not.

19



intermediate inputs. Similarly for the OP approach: βl is not identified since ljt is collinear with the

nonparametric function ft(ijt, kjt). If labour input demand is indeed a function of both state variables

ljt = gt(ωjt, kjt), then perfect collinearity with ft(ijt, kjt) prevents identification of βl.

ACF’s rescue strategy for the structural approach is based on acknowledging the ‘perfectly variable’

characteristic of labour, but turning it into an ‘almost perfectly variable’ characteristic: the trick applied

for identification is to assume firms chose ljt at time t − b (0 < b < 1). This means the firm chooses

labour input after capital stock kjt was determined at t − 1 (via investment choice ijt−1) but before

intermediate inputs mjt are chosen at time t. The first-order Markov process describing productivity

evolution is then defined between the three subperiods, t− 1, t− b and t, namely

p(ωjt|Ijt−b) = p(ωjt|ωjt−b) (40)

p(ωjt|Ijt−1) = p(ωjt|ωjt−1), (41)

where Ijt−b and Ijt−1 denote the ‘information sets’ available to firm j at time t−b and t−1 respectively,

and p(·) is some general functional form. This implies that ljt now enters the demand function for

intermediate inputs as a state variable:

mjt = ht(ωjt, kjt, ljt) (42)

This function can be inverted if mjt is strictly increasing in ωjt and there are no other unobserved pro-

cesses driving the demand for intermediate inputs (scalar unobservable). The first stage uses the inverse

function of (42) to control for unobserved productivity in the gross-output production function

ojt = βo + βkkjt + βlljt + h−1t (mjt, kjt, ljt) + εjt (43)

Since the function for intermediate inputs ht(·) and therefore also its inverse for ωjt contains ljt, iden-

tification of βl is not possible in the first stage. Note the subtle difference in the identification problem

here compared with that in the LP first stage: identification in the latter was not possible because labour

was determined by the same state variable as intermediate inputs; in the former, identification is not

possible because intermediate inputs are also a function of labour, while labour is no longer a function

of the same state variables as intermediate inputs due to the explicit timing assumption described above.

The purpose of the ACF first stage estimation is to eliminate the portion of output determined by unan-

ticipated shocks at time t, measurement error or any other random noise: εjt. Isolating this quantity is

useful because initially the econometrician cannot separately identify the productivity shock observed

by the firm from the random component of the unobservables. In practice the first stage is implemented

by regressing output on a polynomial function of labour, capital and intermediate inputs, like in the two

previous structural estimators. The estimated output net of εjt is then simply the predicted values from

the first stage regression

ojt − ε̂jt ≡ Ψ̂t(mjt, kjt, ljt) = β̂kkjt + β̂lljt + ĥ−1t (mjt, kjt, ljt). (44)

In order to implement stage two and identify the input coefficients, ACF derive two moment conditions.
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With these in mind, unobserved productivity can be specified to evolve following

ωjt = E(ωjt|ωjt−1) + ξjt, (45)

where ξjt is mean-independent of all ωt−1. Given that kjt and ljt−1 are uncorrelated with ωjt by ‘struc-

tural’ assumption (capital is predetermined since investment decisions are made in the previous period;

labour in the previous period is determined prior to the productivity shock in the current period), two

independent population moment conditions can be defined as

E(ξjtkjt) = 0 (46)

E(ξjtljt−1) = 0 (47)

These moment restrictions summarise the identification strategy for βl and βk in the second stage. In

order to employ their sample analogues in the second stage regression, ACF recover the distribution of

ξjt, the innovation in firm level productivity, which enters the optimisation problem

minβ∗

∑
h

∑
t

∑
j

ξ̂jt(β
∗)Zjht

′ · C ·
∑

h

∑
t

∑
j

ξ̂jt(β
∗)Zjht

 (48)

where β̂∗ = (β̂k, β̂l), Zjht = [kjt ljt−1]
′ and C is an arbitrary 2 × 2 weight matrix. The function

[·]′ · C · [·] is once again the ‘criterion function’ of the optimisation problem.

In practice, the optimal values for β̂∗ and thus ξ̂jt(β∗) are obtained by repeated iteration over a se-

quence of steps: first, assuming some starting values for βl and βk (e.g. the OLS estimates) β#1
l , β#1

k ,

productivity ω#1
jt (·) is obtained by computing

ω#1
jt (β#1

k , β#1
l ) = Ψ̂jt − β#1

k kjt − β#1
l ljt, (49)

where the first stage result Ψ̂jt stays fixed throughout the entire iteration process. In a second step, a

suitably general representation of the Markov process in equation (45) is employed to estimate

ω̂#1
jt (β#1

k , β#1
l ) = ϕ(ω̂#1

jt−1(β
#1
k , β#1

l )) + ξ#1
jt , (50)

perhaps using nonparametric techniques or a polynomial function for ϕ(·).27 The residuals from this

regression will be an estimate of the innovation/productivity shocks series ξ̂#1
jt . In step 3 this innovation

estimate is entered in the criterion equation and the result is evaluated: if it constitutes a global minimum,

the iteration process stops and β̂#ik , β̂#il are the ACF estimates for the labour and capital coefficients – i

here simply indicates the iteration round, but is of no significance. If they do not, we return to the first

step, select some different values for βk, βl and the sequence of steps continues. This iteration process

is carried out using a minimisation routine which iterates until a global minimum is reached.

Standard errors for the resulting β̂k, β̂l can be obtained by bootstrapping. Due to the three-stage process

this is somewhat more elaborate and time-intensive. As in the case of OP and LP, such multiple-stage

estimators can result in large bootstrap standard errors in the case of strongly unbalanced data.
27This is can be implemented in Stata by using for example the locpoly command.
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An important feature of the method suggested by ACF is that it does not rule out labour being a dynamic

input. This is possible as a firm’s choice of ljt and kjt would depend on ljt−1 while that of interme-

diate inputs mjt does not, since it is by assumption a ‘perfectly variable’ and non-dynamic input. The

persistence generated by allowing labour to be dynamic can also be exploited for identification (e.g. em-

ploying further lags of ljt in additional moment conditions). Identification is also aided by the presence

of unobservables affecting mjt, but only through the channel of ljt and kjt. For the same reason as why

labour can be a dynamic input, these unobservables can also be correlated over time.

The estimation approach proposed by ACF is in fact quite similar to that proposed by Arellano and Bond

(1991) and Blundell and Bond (1998). The moment conditions used in the dynamic panel framework

of the latter rely on setting the orthogonality conditions with respect to the composite error term ωjt +

εjt equal to zero. In the structural approach by ACF, the first step serves to net out εjt which allows

forming moment conditions defined in ωjt. The main difference consists in the assumptions about the

unobserved productivity shock ωjt. In the dynamic panel framework, ω is treated parametrically and

assumed to have a linear functional form. This is its main drawback vis-à-vis the structural approach,

in which ωjt is allowed to assume any functional form. At the same time, the dynamic panel approach

produces consistent estimates incorporating firm-level fixed effects in ωjt, while this is not possible in the

structural framework. A further advantage is that the dynamic panel estimator does not rely on the scalar

unobservable assumption in the input demand functions employed in the structural estimators.

3 Empirics

This section provides an application of the estimators discussed above with the objective of comparing

their relative performance and linking this to the findings in the wider empirical literature on production

functions. For this purpose, we use a sample of UK high-tech firms for the period 2000-2007, taken from

a database which is more readily accessible to researchers than firm-level data collected by national

statistical offices and commonly made available only in secure data environments. Furthermore, the

data is representative of similar firm-level data sets available for a large range of countries from the

same source. The UK FAME data set and similar data provided by Bureau van Dijk, most notably

AMADEUS, have been used extensively in empirical work involving productivity analysis (Bloom and

Van Reenen, 2007; Harris and Li, 2008; Javorcik and Li, 2012; Giovannetti and Magazzini, 2013).

It is therefore of interest to investigate to what degree plausible production function estimates can be

obtained from this type of firm-level data employing the estimation procedures presented above.

We limit the analysis to high-tech firms in the SIC (2003) 32 industry. We focus on this narrowly defined

industrial sector to allow for easier comparison across the various regression models, since the structural

estimators do not account for industry fixed effects. We use two different samples for estimation. In the

first sample, we include all firms that report sufficient data to construct value-added, capital and labour

inputs, which yields n = 318 firms with n = 1, 742 observations (‘Sample 1’). The second sample

contains only firms for which we also have investment data, which is necessary for the estimation of the

OP method. FAME does not report investment data, so that we have to sconstruct this variable from the

book value of tangible assets. This ‘Sample 2’ is made up ofN = 214 firms with n = 958 observations,

thus over 30% smaller.
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It is important to stress that the data employed is in our eyes typical for firm-level datasets used for

productivity analysis, but that they are characterised by serious limitations, which makes them far from

ideal for the straightforward application of the estimators discussed above. We feel the latter point is too

often neglected in applied work and therefore go to great lengths to discuss data source, construction

and properties in Sections A-1, A-2 and A-3 of the Appendix.

3.1 Empirical Implementation

We begin our analysis by estimating input coefficients using simple OLS, pooling across all observations

and running separate regressions with and without year dummies. We then add firm fixed effects (FE)

and as an alternative to account for the impact of time-invariant heterogeneity estimate the production

function in first differences (FD). The FE estimator requires strict exogeneity in the factor inputs, i.e.

E(εjt|x0, xj1, ..., xjt, ..., xjT ) = 0 where x ∈ k, l, since the within-transformation introduces variable

dependence on the time-series mean in each observation. In contrast the FD estimator only requires weak

exogeneity, i.e. E(εjt|x0, xj1, ..., xjt) = 0. The latter allows future input realisations to be correlated

with the contemporaneous error term and therefore imposes less restrictive assumptions on the structure

of the correlation between inputs and the error term. On the other hand, it is well-known that first-

differencing exacerbates measurement error and thus bias in the regression. For all of the above estimates

standard errors are clustered at the firm-level.

The first stage of the OP and LP procedures is implemented through a third-degree polynomial expan-

sion. In the OP estimation, we also include interaction terms with year dummies in the first stage spec-

ification. The second stage in both OP and LP models is estimated using nonlinear least squares where

φ̂ obtained in stage one enters as a quadratic and cubic term. We rely on bootstrapping for inference

given that this is a two-step procedure. Note that the bootstrap involves both stages of the estimation

procedure.28

The ACF procedure is implemented as follows. The first stage is similar to the OP and LP procedures

described above: we use intermediate inputs as a proxy for unobserved productivity. The second stage

is implemented through numerical methods, namely a Newton-Raphson optimisation procedure. Initial

values for input coefficients are taken from an OLS regression and used to compute an initial value for

ωjt using Ψ̂jt obtained in the first stage. Then ωjt is regressed nonparametrically on ωit−1 to obtain

ξjt.29 The residuals ξjt are then used to minimize the ‘criterion function’ in equation (48) above. This

optimisation procedure is applied iteratively until the algorithm has determined the minimum and the

corresponding coefficient estimates β̂l, β̂k. Following ACF, we use kjt and ljt−1 as second-stage instru-

ments. Inference is based on boostrapping over the three stages of the estimation procedure.

We implement both the AB Difference GMM and BB System GMM estimators. For each of these dy-

namic models we begin with an empirical specification which follows the assumptions of the OP, LP

and ACF estimators: labour and the lagged dependent variable are treated as endogenous, while capital

stock is treated as predetermined. We then test all of these assumptions using the suitable overiden-

tification tests (Hansen, Sargan, Difference Sargan – depending on whether the two-step or one-step

method is implemented) and adopt the lag-length which is consistent with these test results. Note that
28For the LP procedure, we use the levpet command in Stata (Levinsohn, Petrin and Poi, 2004).
29We use Stata’s locpoly to estimate a local polynomial regression using a 4-th order polynomial.
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measurement error in the factor inputs and the lagged dependent variable can cause the breakdown of

the exogeneity assumptions as just laid out and necessitate the adoption of alternative lag structures for

instrumentation. Furthermore, in the System GMM case we need to worry about exogeneity with re-

spect to the firm fixed effect ηj , which is also a testable assumption. Initial condition assumptions about

whether the economy is in long-run equilibrium cannot be tested formally and will need to be assessed

intuitively. Since our time-series dimension is relatively short and we do not see any signs of overfitting

bias (Sargan p-values are not close to unity) we always employ all possible moment restrictions implied

by the adopted lag-structure. In all GMM models we specify year dummies to account for common

shocks γt.

We estimate both the unrestricted and the restricted models shown in Equation (11) and Equation (12)

above. The restricted coefficients are obtained by first consistently estimating the unrestricted coef-

ficients in Equation (11) and then using these coefficients in a Chamberlain-type minimum distance

estimation (Chamberlain, 1984; Wooldridge 2002). Instead of the one-step GMM estimator used by

BB, we use the asymptotically more efficient two-step procedure which uses the optimal weight matrix,

correcting for possible small sample downward bias as suggested by Windmeijer (2005).30

3.2 Results

In discussing our results we are particularly interested in assessing whether factor input estimates differ

across the different estimators when estimators rely on different timing assumptions regarding firms’

input decisions and/or the assumptions made with regard to the unobserved productivity term, i.e., scalar

unobservability and strict monotonicity.

The results are shown in Tables 1 to 4 for the static and dynamic results, in each case we present the

regressions for Sample 1 and 2 respectively. Due to the data limitations the larger Sample 1 does not

allow for estimation of the OP.

3.2.1 Static Specification

The results from the pooled OLS regression for Sample 1 in Table 1 yield a labour input coefficient of .69

and a capital coefficient of .21 if no time dummies are included and of .71 and .19 with time dummies.

These technology parameters are remarkably close to the ‘widely accepted’ macro data on labour share

in output .7 and (under CRS assumption) the implied capital share .3. The fixed effects (FE) estimates in

Columns (3) and (4) of Table 1 drop as expected vis-à-vis their OLS counterparts for both inputs. This

finding would support the notion of an upward bias in OLS estimates due to the transmission problem.

At the same time, however, it should be noted that capital stock is more likely measured with error

when firms are large, given the complexity of accounting for all book values and their different vintages.

Further assuming a systematic relationship between large firms and their unobserved productivity this

measurement error may come to bear more significantly in the within transformation where a large share

of variability is taken out of the data. An alternative using first-differences instead of FE in Columns (5)

and (6) shows an even more pronounced drop in the levels of both input coefficients. From our prelim-
30We use Roodman’s (2006) xtabond2 command to implement the AB and BB estimators. Måns Söderbom pro-

vided code to implement the minimum distance procedure. Söderbom’s code is available on his personal website:
http://www.soderbom.net/Resources.htm
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inary data analysis we know that all variables are highly persistent, such that near-unit root behaviour

renders variables in first differences akin to random walks. Our findings thus far are a perfect reflection

of the common experience in the applied literature, whereby attempts to account for firm-level fixed

effects lead to dramatically lower capital coefficients and large decreasing returns to scale.

The LP estimates in Column (7) are disappointing: the labour coefficient drops to .20, which is un-

realistically low. In contrast, the capital coefficient increases to .33 which may be reasonable if one

assumes that the OLS estimate is biased downward. Recall that capital is deemed predetermined in the

LP approach, while labour is assumed to be perfectly variable and determined by the firm after the pro-

ductivity shock has been observed. While the identification strategy for the capital coefficient may thus

be valid, the collapse of the labour coefficient points to the ACF criticism that labour is unidentified in

the first stage due to perfect collinearity with the productivity term proxy. In the final column, we report

the estimates for the ACF approach. The labour coefficient is .61, which is lower than the OLS estimates

and inbetween the FE and 2FE estimates; the ACF capital coefficient is .32, which is higher than for

the OLS, FE or FD specifications. These results for the ACF procedure appear to be in line with these

authors’ findings using Chilean firm-level data, which also found generally lower coefficients for labour

input relative to OLS, but a capital coefficient that is either larger or smaller than the OLS estimate

(depending on the industrial sector). Yet, in our sample the bootstrap standard errors obtained for the

ACF are much larger than for the other estimators: the main reason for this will be that the bootstrap for

the 3-stage ACF estimator is very demanding of the data, which has many missing observations, such

that bootstrap samples differ substantially in terms of the number of available observations to estimate

the ACF procedure. This illustrates an important drawback of employing the ACF procedure when only

‘imperfect’ firm-level data is at hand – which is arguably the standard case. All models in this larger

sample reject constant returns to scale (in favour of decreasing returns) at standard significance levels.

Note that our sample is defined very narrowly in terms of sector of operation, and it may be that the

various attempts to control for endogeneity in the standard OLS regression in column (1) in effect throw

out the baby with the bath water: introduction of fixed effects or their accommodation via first differ-

encing may introduce data-dependencies which lead to more severe bias than the endogeneity of factor

inputs in the standard OLS model. The stringent assumptions of the LP estimator also seem certain to

be violated given the large decreasing returns to scale (β̂l + β̂k ≈ .55). The fact that the ACF model

brings the labour coefficient back up to the level where we expect it to be suggests that labour is indeed

unidentified in the first stage LP regression.

Table 2 reports the results for Sample 2, which required investment data and was shown to be made up

of larger firms and characterised by a high number of gaps in individual firm’s time series. Comparing

results across samples, the estimates for OLS labour input coefficient falls from .69 to .64 with no year

dummies and from .71 to .65 including year dummies. For the capital coefficients, the estimates increase

from .21 and .19 to .31 and .30 respectively. If these changes were deemed to arise from ‘structural’ dif-

ferences between the two samples, rather than any differential manifestation of transmission bias, then

we may argue that the more capital-intensive result in the restricted sample is in line with our evidence of

firm characteristics (refer to Appendix Figure A-II, in particular the density plot for capital). As should

be expected, the estimates for the FE specification in Column (3) falls relative to the OLS estimates

in Column (1), although not as dramatically as in Sample 1. The conceptually preferable FE estimate
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for the specification including year dummies (thus accounting for common shocks), counterintuitively,

yields a higher labour coefficient than the corresponding OLS specification, whereas the capital coeffi-

cient is substantially reduced. The same pattern is repeated in the FD estimates. We could argue that the

seemingly irregular results for the models with year dummies relate to the large number of gaps in the

time-series. For all of the estimators discussed so far in Sample 2 we find no evidence against constant

returns to scale, which is in stark contrast to the largely decreasing returns in Sample 1.

The OP estimate for the labour input yields a coefficient lower than OLS as predicted by theory in the

presence of transmission bias. The coefficient is larger than the FE estimate excluding year dummies.

The capital coefficient obtained by using the OP procedure of approximately .07 is much lower than

in any other specification, casting some doubt on the estimation procedure and the investment data on

which it crucially depends. The FAME data set is notorious for its limited data on investment, and we

were forced to adopt additional strategies to extend our sample (see Data Appendix); however, the capital

coefficient obtained by the OP procedure suggests that these strategies may cause additional problems

in the estimation, which supports a preference for an estimator that relies on intermediate inputs instead

of investment series. Figure 1 shows the smoothed distribution of investment, capital stock and TFP

derived from the OP estimator.31 This is a visual test of the monotonicity assumption, where investment

is assumed to be strictly increasing in both capital stock and productivity. The figure indicates some

non-monotonicity of investment, in particular with regard to the capital variable, possibly reflecting the

presence of adjustment costs to investment. The violation of the monotonicity assumption may partly

explain the poor performance of the OP estimator with regard to the capital coefficient.

Similarly to the results in Table 1, the results for the LP procedure are hard to reconcile with the the-

oretical discussion in Section 2.1. To test whether the monotonicity assumption holds in the case of

intermediate inputs, Figure 2 shows the smoothed plot of intermediate inputs, productivity, and capi-

tal. This suggests that the monotonicity assumption for intermediate inputs appears to hold as higher

productivity realisations appear to be associated with higher intermediate input levels for given physical

capital levels.32 This finding is also reassuring with regard to the ACF estimator as we use intermediate

inputs to back out unobserved productivity. The estimated LP labour coefficient is far too low while the

capital coefficient increases dramatically relative to the OLS, FE, FD and OP estimates.33 Our estimates

suggest a strong downward bias in the labour estimates. This aside, the LP capital coefficient appears

to be too large, indicating a possible upward bias. An interesting point raised by ACF is the greater

sensitivity of the LP procedure (relative to their own estimator) to the type of intermediate input used in

the first stage regression. Unfortunately, FAME provides only a single measure for intermediate inputs

and we therefore cannot verify this claim in the present application.

Finally, the ACF estimates are similar to the results for the full sample. The estimate for labour input of

.61 and for the capital coefficient of .31 are reasonable and both move into the directions consistent with
31We normalized TFP (ω) in order to simplify the comparison with the corresponding plot for the LP estimator shown in

Figure 2. We use the lattice package in R to draw these plots.
32Note that we also normalized TFP (ω) for this plot.
33In their regressions of Chilean firm data ACF compare the estimates from their own empirical approach against estimates

obtained using the LP method in various industrial sectors: while the differences do not appear to follow any discernable
pattern, labour coefficients from LP are found to be lower in a number of sectors. ACF interpret this finding as an overall
downward bias in the LP estimates.
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theory.34 While the ACF method yields lower labour input coefficients vis-à-vis OLS in both samples,

the capital coefficient in Table 1 increases substantially relative to the OLS result but remains virtually

the same in Table 2. Due to the strong increase of the capital coefficient in Table 1, returns to scale

estimated using ACF are larger than those implied by OLS.35 Overall, our own estimates using ACF

appear to be in line with the estimates in these authors’ application.

Two issues are worth noting in conclusion to these static production function and control function re-

gressions: firstly, the undisputable collapse of the OP and LP estimates in the face of fairly standard,

advanced-country firm-level data. For the OP case this is likely to be closely related to the lack of ob-

served investment series in our data. Having said that, the breakdown of the monotonicity assumption

in the presence of zero investment is a sizeable hurdle for the application of this empirical strategy. The

LP case, in contrast, while somewhat affected by the inadequacy of our investment series, is primarily

characterised by grossly underestimated labour coefficients. As suggested by ACF, the estimator seems

unable to identify labour in the first stage regression under the present circumstances. Secondly, we

need to highlight the relative performance of the standard OLS estimator, which in both samples can be

seen to be largely replicated by the vastly more complex ACF estimator: the latter’s point estimates are

comfortably contained within the OLS 95% confidence intervals.

3.2.2 Dynamic Specification

Tables 3 and 4 report the corresponding results for an ARDL(1,1) specification implementing the dy-

namic panel estimators. Using the full sample in Table 3, the OLS estimates in column (1) marginally

reject the common factor restriction at the 10% level, thus without imposing common factor restrictions

the long-run coefficients (standard errors) obtained are β̂l = .790 (.182) and β̂k = .161 (.131) respec-

tively. Hence, the estimate for the labour coefficient is larger, while the capital coefficient is smaller

than in the static model. Due to the imprecision of the capital coefficient these long-run parameters

cannot reject CRS (p = .638). The Arellano and Bond (1991) test indicates serial correlation in the

residuals. The coefficient for the lagged dependent variable is relatively close to unity and thus may be

upward-biased, which would suggest the necessity for firm-specific fixed effects.

As expected given the relatively short time-series compared to the number of firms (Nickell, 1981),

adding firm fixed effects to the dynamic specification (their statistical significance confirmed by an

F -test, p = .000) significantly reduces the coefficient on the lagged dependent variable to around .3.

Since this and the following models in Sample 1 cannot reject common factor restrictions we focus on

these results henceforth. While the labour coefficients are virtually unchanged, the capital coefficient

is again much lower for the dynamic specification than for the static model and is now insignificantly

different from zero. Our serial correlation tests furthermore indicate that the residuals are subject to

AR(2) correlation over time. We know that the downward shift in the estimates is due to the ‘Nickell-

bias’ induced by contemporaneous correlation between regressors and residuals as a result of the within-
34In their estimates using the Chilean data, ACF find consistently lower returns to scale than when using OLS. They argue

that this is indeed the expected direction of change when using their estimator as OLS estimates are expected to be upwardly
biased. In our ACF estimates, the reduction in the estimate of returns to scale comes mainly from a lower labour input
coefficient.

35ACF found in their own application that the capital coefficient may be larger or smaller than the OLS counterpart, depend-
ing on the specification and sector for which the production function was estimated. ACF argue that this pattern emerges from
the fact that ljt is more correlated with ωjt than kjt.
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transformation.

Applying the AB Difference GMM estimator we opt for two alternative specifications: the first, iden-

tified as AB0, adopts the same timing assumptions as the structural estimators by OP, LP and ACF,

namely that capital stock is predetermined whereas labour is endogenous (as is, by construction, the

lagged dependent variable). The second model, identified as AB?, represents the preferred specification

based on diagnostic tests – note that ‘preferred’ here does not imply that the specification satisfies all

diagnostic criteria (more on this below). Similarly for the System GMM models. Since all of these do

not seem to suffer from serial correlation (given that AR(1) is introduced by construction) we need not

discuss the AB serial correlation test results any further. Note that when applying the Difference GMM

estimator in this sample we lose almost exactly a quarter of the observations due to the gaps in the firm-

level data series. The AB0 model in column (3) provides a coefficient on the lagged dependent variable

of around .5, which consistent with theory is thus within the bounds set by the OLS (upward-bias) and

the FE (downward-bias) estimates. The long-run labour coefficient at .65 is actually below that of the

FE model, while the capital coefficient has recovered somewhat from the Nickell bias-induced lows

of the FE, but is still statistically insignificant. A Sargan test of overall instrument/moment restriction

validity for this model indicates that the null of exogeneity is rejected, thus rendering our instrumenta-

tion strategy invalid.36 In column (4) we therefore adjust the instrument matrix to obtain AB?, which

yields sensible capital and labour coefficients very much in line with our preferred static model and no

evidence for invalid instruments (Sargan p = .82, various Difference-in-Sargan tests for the levels equa-

tion instruments). This finding is rather surprising, given the high degree of persistence in the variable

series, in which case we would expect the past levels employed by the AB estimator to represent weak

instruments for the endogenous variables in first-differences.37

Moving on to the System GMM estimates in Columns (5) and (6) of Table ?? (focus is on the restricted

model results), we can see that the BB0 model yields a substantially higher lagged dependent variable

coefficient but a substantially lower capital coefficient, which is statistically insignificant. Crucially, the

Sargan test implies that the overall instrumentation strategy is invalid (exogeneity rejected, p = .018),

while the Difference-in-Sargan test suggests that the instruments/moment conditions for the additional

levels equation may be to blame (exogeneity rejected, p = .018). Further investigation confirms that

the instruments for the lagged dependent variable in the difference equation violate the exogeneity as-

sumption (p = .002) – this is in line with our findings for AB0. Next, in the BB? model we attempt to

remedy this problem by restricting the lags for the lagged dependent variable instrumentation to those

from t− 4 and onward for ∆yit−1. The long-run labour coefficient is again relatively similar to the AB

and BB0 estimates, while the long-run capital estimate changes only marginally in the direction of the

former. While the Sargan test indicates overall instrument validity (p = .159) the Difference-in-Sargan

tests again indicate that the additional moment restrictions afforded by the levels equation of the Sys-

tem GMM are invalid. Further analysis indicates that the moment restrictions for the labour and lagged

value-added variables are invalid; attempts to remedy this problem by selectively dropping moment re-
36The empirical implementation in Stata (xtabond2) allows us to test the validity of each moment restriction separately,

from which analysis we can conclude that in the present case the instrumentation of the lagged dependent variable is invalid.
Employing a Difference-in-Sargan test for the lag t − 3 as instrument for ∆yit−1 we find the null of exogeneity rejected at
p = .001.

37Recall the AR(1) regression results in Appendix Table A-IV: all Difference GMM estimates are lower than the System
GMM estimates and closer to the Nickell-biased FE estimates, which can be interpreted as evidence for weak instruments.
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strictions does not not lead to a qualitative change in the coefficient estimates but increases imprecision,

suggesting low informativeness of the remaining instrument sets. The use of lagged differences as in-

struments for levels thus did not prove successful in the present data while the correctly specified AB

approach seemed to yield meaningful and seemingly reliable results. The latter finding is rather curi-

ous, given that we indicated the high persistence in the data and the previous findings using simulations

(Blundell and Bond, 2000).

All of the GMM estimates for the lagged dependent variable lie within the bounds set by the OLS and FE

estimates, however given a lack of obvious priors about the ‘correct’ level of persistence in the economic

system, it is difficult to distinguish further between the various approaches based on the ρ̂-coefficient

alone. Our diagnostic testing suggested that the Difference GMM estimates in column (4) provides our

best bet for consistency and efficiency in Sample 1.

Turning to the results for Sample 2 in Table 4, we note that the estimates obtained for the restricted sam-

ple yield larger returns to scale for all specifications, excessively so in models (2) and (5). Beginning

again with the OLS results we find the common factor restrictions accepted and can thus focus on the

restricted results. In comparison with the larger sample, the OLS results here yield a markedly higher

labour coefficient, around .9, while capital has dropped to .09 (statistically insignificant). Residuals are

seemingly free from serial correlation. Once fixed effects are included (F -test indicates significant dif-

ferences across firm intercepts, p = .000) the already moderate capital coefficient plunges further, while

the coefficient on the lagged dependent variable drops from .91 in OLS to .35 here. Serial correlation is

found in the residuals and the model bears all the hallmarks of the Nickell bias.

When we move on to the Difference GMM estimator we drop over 40% of the observations (and equiv-

alently 78 out of 214 firms), due to the large number of gaps in the data. In the basic identification setup

AB0 we reject the common factor restrictions, thus leading to long-run coefficients (standard errors) of

β̂l = .588 (.413) and β̂k = −.183 (.260). While the instrumentation strategy seems valid, the loss of

precision in the empirical estimates as well as the negative coefficient on capital stock may be attributed

to the weak instrument problem. Attempts to remedy this problem by adopting alternative moment re-

strictions does not prove terribly successful: in column (4) we present our preferred specification AB?
which nevertheless displays an excessively large labour coefficient and barely improves on the OLS cap-

ital estimate. These results suggest that relying entirely on the estimation equation in first differences

may prove too challenging for the data if gaps in the data are too numerous. Recall further that the weak

instrument problem may be driven by the high level of persistence we found in our AR(1) regressions

reported in Appendix Table A-V.

Using the System GMM estimator in the basic identification strategy, BB0 in column (5) produces

similarly extreme coefficients on labour and capital as in the AB estimator, arguably even more so:

β̂l = 2.071 (1.253) and β̂k = −.024 (.722) (since the common factor restriction is rejected we report

the long-run coefficients implied by the unrestricted ARDL model). In contrast the selective restriction

of moment conditions can yield a more reasonable picture as is evidenced in column (6): in the BB?
we restrict the instrumentation for capital stock to the difference equation and furthermore impose the

identity matrix as the optimal weight matrix in the one-step estimation procedure (both in the difference

and levels equations). In effect this turns the System GMM into a standard (inefficient) 2SLS estimator,

following the original specification strategy in Blundell and Bond (1998). This approach yields sound
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overidentification diagnostics and statistically significant long-run factor coefficients of .77 for labour

and .34 for capital. While the imposition of the identity matrix in this regression and the effective return

to a more conventional IV estimator seems ad hoc and thus questionable, we may suggest in our defence

that the challenges imposed by the data availability seem to be tackled successfully although the weak

instrument problem still remains, at least for the labour and lagged dependent variables.

3.2.3 Summary of Empirical Results

In summary the empirical results from our two samples of UK high-tech firms yield a number of impor-

tant insights into the relative performance of popular production function estimators.

(i) Data availability, structure of the missing observations and time-series persistence are found to

play an important role in the performance of all standard, GMM and ‘structural’ production func-

tion estimators tested, and account in part for the considerable differences in the estimates for the

input coefficients.

(ii) The LP strategy yielded rather implausible labour coefficients, most likely linked to the identifi-

cation problem for labour in the first stage of their procedure as pointed out by ACF. In contrast

the LP capital coefficients were very close to the preferred estimates in both samples. In case of

the OP estimator, where the identification issue is said to be less pronounced in the first stage,

the poor performance of the estimation to identify capital stock may in part be due to the specific

problems introduced when we created the investment data series, which is also reflected in the

suggested violation of the monotonicity assumption.

(iii) ACF estimates were seemingly meaningful and surprisingly similar in the two samples, despite

the considerable data problems in the smaller sample. It is, however, notable that in the case of

Sample 2 these estimates did not differ substantially from those of a standard OLS regression,

which to a lesser extent is also the case in Sample 1. Furthermore, data properties proved having

a strong impact on the size of the bootstrapped standard errors.

(iv) The dynamic panel data estimators (AB and BB) have proven to be very flexible in their applica-

tion, given that they allow us to test the validity of individual moment restrictions. The results for

the AB estimator in Sample 1, which are virtually identical to those of the ACF in the static case,

are however somewhat questionable given the finding of high persistence in the variable time se-

ries. As long as instrument informativeness has to be assumed, rather than tested and confirmed,

the AB estimator will always be questioned as driven by the weak instrument problem.

The BB estimator could not be made to work in Sample 1, highlighting the ability of the researcher

to identify this short-coming, rather than to rely on the validity of all assumptions as in case of the

structural estimators. In the more challenging Sample 2, a BB specification could be identified to

satisfy the instrument validity concerns while also yielding meaningful long-run parameter esti-

mates. Note that the ‘basic’ specifications of the AB and BB (which adopted identical assumptions

to OP and LP regarding labour and capital) fail spectacularly in either sample.
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3.3 Going beyond the sample regression results

Our empirical illustration thus far has emphasised the technology parameter estimates for capital and

labour. In the absence of a substantial array of established residual diagnostic tests in panel econometrics

we have adopted the ‘conventional wisdom’ of capital and labour income shares of .7 and .3, as well

as the proximity to constant returns to scale as a means to gauge the viability of results from various

regression models. In this section we want to add to this analysis by conducting a number of robustness

checks of the regression results and by further probing the implied TFP level estimates using correlation

and ‘second-stage regression’.

3.3.1 Slope coefficient estimates

We employ bootstrap samples to investigate the distribution of slope coefficient estimates across a

pseudo-universe of firms consistent with the moments of the regression residuals. We do this in two

distinct ways. First we construct 200 bootstrap samples based on the residuals of each estimator and

estimate the slope coefficients from said estimator. This procedure arrives at estimates for OLS, 2FE,

FD and LP which indicate the spread of estimates conditional on the validity and consistency of the

estimation procedure. In Figure 3 we provide histograms for each of the 2FE, FD and LP estimates in

deviation from the OLS results. Focusing first on the relative labour coefficients in the left column, we

can see that OLS and 2FE results are quite similar, with 2FE on average slightly larger in magnitude

as evidenced by the slightly larger left tail of the histogram. FD estimates for labour are on average

somewhat smaller than OLS ones, although there is still some overlap between the two for 95% confi-

dence intervals. LP labour estimates, on the other hand, as was already evident from our results above,

are substantially smaller than OLS based ones, on average we observe a location shift of −.5 for the

LP labour coefficients. For the capital coefficients in the right column, 2FE and in particular FD rep-

resent coefficients considerably smaller than for OLS based regressions, whereas the LP estimates are

somewhat larger.

As a second robustness check we follow Levinsohn and Petrin (2003) and estimate OLS, 2FE, FD and

LP models with the bootstrapped samples based on the OLS residuals. So while our previous procedure

constructed 200 bootstrap samples from each estimator’s residuals, the present one only creates samples

based on the OLS estimator and then employs all 4 estimators to the same bootstrapped sample. In Figure

4 we plot the estimated distributions (using Epanechikov kernel estimation) of the labour (left plot) and

capital (right plot) slope estimates for the (i) OLS (blue solid line), (ii) 2FE (black dash-dots), (iii) FD

(green dots) and (iv) LP (red dashes) estimators.38 It can be seen that contrary to the example provided

in Levinsohn and Petrin (2003), the estimates from various empirical models do not differ substantially

in their central mass, which is around .7 and .2 for labour and capital respectively, although the spread of

the estimates differs considerably across different estimators. We obtain very similar distributions when

we use LP residuals to construct the bootstrapped samples, with the exception of a location shift as the

mode for the labour coefficients is now around .2.
38Note that the bandwidth applied in the kernel estimation is allowed to differ across these four data series: imposing the

same bandwidth leads to essentially the same result of a common mass point but readability is severely affected.
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3.3.2 TFP estimates

An important question is whether the different point estimates we obtained in the production function

regressions for various empirical models actually have a bearing on the resulting TFP level estimates.

Given the stark differences between, say, the OLS and ACF results on the one hand and 2FE and LP

results on the other, it would be somewhat surprising if this were not the case. In the following we focus

on the static specifications in our Sample 1, thus limiting the discussion to the OLS, FE-type, LP and

ACF (in total: six) estimators in the production function regressions in Table 1. It is worth noting that

we follow common practice and compute the TFP levels from the production function estimates whilst

ignoring any concerns about inference in the latter: even though the computed or bootstrapped standard

errors indicate considerable difference in the size of the 95% confidence intervals for the estimates across

our empirical models,39 we take the point estimates at (deterministic) face value.

We begin by computing Pearson pair-wise correlation coefficients for the TFP-level estimates40 from

these six estimators: the top-left panel of Table 5 indicates a uniformly high level of correlation in this

case, with the ‘weakest’ correlation coefficient between FE and ACF TFP .63. We calculate the same

correlation matrix following a number of transformations: in the top-right panel of Table 5 we compute

TFP-levels in deviation from the firm-specific means, in the bottom-left panel in deviation from the

cross-section means and in the bottom-right panel a combination of the two transformations. Taking out

this variation in many cases leads to a further increase in the correlation coefficients, which are now

uniformly close to unity.

As a second step we follow van Beveren (2012) and investigate the commonality across the TFP esti-

mates with a simple regression model: following the collapse of the dot-com bubble in 2000 the US

NBER suggested a recession beginning in March 2001, which can be anticipated to have also affected

the electronics industry in the UK. We regress TFP estimates on a set of year dummies to chart the evolu-

tion of TFP over time. The results in Table 6 indicate substantial levels differences in TFP by production

function estimator applied, with FE and LP TFP levels considerably higher than those for OLS and ACF.

Year dummy coefficients, however, do not differ substantially across models and follow a very distinc-

tive pattern: after a substantial dip in 2001 of around 15%, productivity recovered to previous levels in

the following year and then showed healthy growth rates of around 15% per annum until the end of our

sample period. If we interpret the year 2001 dummy as the ‘crisis effect’ then with the exception of ACF

all TFP estimates are negative and statistically significant at the 5% level (ACF: 10% level). One may

draw the conclusion from this and the previous exercise that some location shifts aside, the differences

across the TFP-levels estimates must be fairly limited, given the uniformly high co-movement across all

six models.

The aim of our next exercise is very simple and mimics the standard practice in the applied literature:

we investigate the ‘determinants’ of productivity by regressing TFP from our above production func-

tions on some variable of interest. Our main focus here is the relationship/correlation between TFP and

innovation, where we consider patent applications seeking patent protection in the UK filed either at the
39As an illustration, for the labour coefficient we obtain the following 95% CI: [.548, .838] for OLS, [.530, .860] for 2FE,

[.400, .744] for FD with year FE, [.051, .349] for LP and [-.439, 1.663] for ACF.
40Note that in all cases we estimated these TFP-levels ‘manually’ in Stata: ω̂jt = yjt − β̂lljt − β̂kkjt with observable

variables in logs and β̂l, β̂k the slope coefficient estimates from each regression model. To create ‘TFP levels’ we then need
to exponentiate the resulting residual.
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European Patent Office (EPO) or the UK Intellectual Property Office (UKIPO) as our measure for the

latter.41 The relationship between intellectual property in the form of patenting and firm performance

is a long-standing issue in the literature, which has generated a considerable amount of empirical in-

vestigations (Griliches, 1987). The data on patent applications is available from 1982 to 2008 and in

the results presented here we construct a ‘patent stock’ from this flow variable, which is then employed

for the years 2000 to 2007.42 The mean patent-stock for our sample of n = 318 firms is around 440,

although the median value is zero: only 50 firms have any patent stock, and thus 268 firms have no

evidence of applying for a patent in the one-and-a-half decades before as well as during our sample

period. The share of patenting firms (16%) is quite sizeable, reflecting the high-tech nature of the firms

in our sample and most likely also the fact that the sample of firms reporting sufficient data to estimate a

production function contains mostly larger firms. The fifty firms with patent stock submitted 111 patent

applications between 2000 and 2007 and no firm which submitted an application during this time did

not already have some patent applications before.

In Table 7 we present least squares regression results for a number of ‘second stage’ models: we begin

with the patent stock as the sole RHS variable (aside from an intercept) in Panel A, then add a set

of common year dummies in Panel B, which we include for the remainder of models. In order to

take out some additional variation without reducing the sample size we then add region dummies in

Panel C. Since these are time-invariant they may further capture parts of other firm-level, time-invariant

unobservables.43 Conceptually, we feel it somewhat contradictory if fixed effects were added to this

setup: the control function estimators are invalid in the presence of firm-level fixed effects and our

production function estimation for LP and ACF was carried out under the maintained assumption of a

common TFP level across all firms in this industrial sector. It is thus difficult to argue for such TFP-level

differences in a second stage analysis of the ‘determinants of TFP’.

In our discussion of the regression results in Table 7 we focus on statistical significance (again a common

practice in ‘second stage’ regressions) and relative magnitude of the regression coefficients across the

different models. We are not interested in any economic interpretation of the estimated coefficients

(although they point in the right direction) or in making causality statements about the findings – the

objective here is to illustrate how we can obtain starkly different results when TFP was computed using

different production function estimators.

The patent stock model in Panel A yields statistically insignificant results for the OLS and ACF esti-

mators, yet the two FE and the LP estimator indicate a positive and significant relationship between

TFP and patent stock, with t-statistics of around 4.5 for the FE and LP models. Results are virtually

unchanged when we add year dummies to account for common shocks. Furthermore, the year dummy

coefficients (not reported) still indicate a negative TFP shock in 2001 and subsequently rising TFP levels

across all models, in line with our earlier findings of a short crisis following the collapse of the dot-com
41This includes patent applications that have come through the Patent Cooperation Treaty (PCT) route designating the

UK. The PCT route offers a way for an applicant to obtain patent protection in several countries worldwide through a single
application filed with the World Intellectual Property Organization (WIPO) in the same way as if the applicant had filed separate
applications in all countries.

42The patent data is taken from EPO’s Patstat (April 2010 version) and was matched to FAME using applicant and firm
names since the two datasets do not share a unique common identifier. For more information on the matched dataset see
Helmers, Schautschick, and Rogers (2010).

43We also ran regressions using more detailed geographical data for each firm in the sample which yielded very similar
results to those presented here.
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bubble. The patent stock correlation remains largely unaffected by the inclusion of regional dummies in

Panel C,44 which further indicate that firms in London, the East of England and Yorkshire have higher

productivity levels than those in other regions of the UK (dummy coefficients not reported). The FE and

LP models still indicate a positive significant relationship between patent stock and TFP levels, which

is of similar magnitude for FE and LP, but only around one tenth in magnitude for the 2FE model (now

only marginally significant). Note that the above patterns of significance/insignifance are unchanged

when we use bootstrap standard errors (available on request).

This exercise reiterates our point of sensitivity of the result to the choice of production function es-

timator. It highlights our concerns that empirical findings may be highly dependent on the choice of

the productivity estimator and therefore suggests that this choice is far from arbitrary when using finite

samples.

4 Concluding remarks

In this paper we have provided a theoretical overview of the concerns over ‘transmission bias’ and the

solutions suggested in the literature on Cobb-Douglas production function estimation at the firm-level.

The discussion in Section 2 suggests that there are broadly conceived two approaches which may be used

to address the bias arising from this problem. On the one hand, the dynamic panel estimators, notably

the BB System GMM estimator, and on the other the ‘structural’ proxy estimators, most notably the

ACF estimator. Both types of estimators can be theoretically motivated and the main difference between

them lies in the specific assumptions made regarding the unobserved productivity shock. A priori, from

a purely theoretical point of view, there is no reason to give preference to either of both estimators – and

in fact they are conceptually very similar. This, however, does not automatically mean that choosing

among these estimators is in practice down to personal preference.

In the second, empirical part of the paper the differences in the empirical results deriving from different

empirical estimators is therefore the central focal point of the analysis. From this exercise we draw four

main conclusions:

(i) The UK firm-level data available in FAME appears to be far from ideal for the estimation of Cobb-

Douglas production functions, given that only a small proportion of firms provide the necessary

input and output data. Crucially, any production function regression sample constructed from

FAME or similar datasets such as AMADEUS or ORBIS most likely cannot be thought of as a

sound representation of the firm universe, and thus the external validity of the empirical findings

is seriously undermined. This is an important observation in light of a considerable number of

empirical papers focusing on productivity estimates obtained from these data sources.

(ii) Considering the substantial differences in the estimates of input coefficients for the two samples

employed here, data availability, in particular with regard to investment data, should be an im-

portant concern when choosing an empirical estimator. More specifically, in data sources such as

FAME the lack of reported investment data and the need to construct this variable from the book
44The regions and regional distribution of firms are as follows: East Midlands (14 firms), East of England (41), London

(47), North-East (4), North-West (15), Scotland (21), South-East (101), South-West (22), Wales (19), West Midlands (22) and
Yorkshire (12).
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value of tangible assets undermines the application of the OP estimator. More generally, the data

availability within-sample (missing observations, unbalancedness) as well as the persistence of the

data should be taken into account when considering the viability of various empirical estimators.

(iii) In terms of economic and statistical significance of the empirical results, among the control func-

tion estimators only the ACF approach appears to produce reasonable input coefficients. The

LP procedure results in dramatically underestimated labour coefficients, while the OP procedure

yields too low a capital coefficient. Data properties (unbalanced panel with missing observations)

hampered the bootstrapping procedure required for inference in the structural estimators, most

significantly so in the ACF approach. Regarding the dynamic panel estimators, the results for

AB and BB seem to be highly contingent on specifying the ‘correct’ instrument matrix, while the

informativeness requirement could not be reliably established in all cases.

(iv) We highlighted the very misleading conclusion about resulting TFP levels if the comparison is

focused narrowly on the analysis of co-movement: correlation coefficients comparing TFP esti-

mates computed from the various production function estimators are consistently high, while a

basic analysis of the evidence of common shocks over time, in particular the collapse of the dot-

com bubble in 2001, also results in seemingly very consistent results. These types of analysis

might lead to the erroneous conclusion that despite the vast differences in factor input coefficients

in the production function regressions, the resulting TFP estimates might still on balance tell a

very similar story. However, when we conduct ‘TFP regressions’, analysing the relationship be-

tween productivity and innovation, we find substantial differences between models using TFP

levels based on the OLS and ACF on the one hand, and those based on the FE and LP estimators.

From a theoretical point of view, any of the production function estimators presented here may appeal

as equally suitable tools to estimate TFP. However, our review suggests that in practice, the untested

assumption that different estimators produce statistically indistinguishable results is at best questionable

and most likely outright wrong. We therefore call on practitioners to spend more time and effort on the

investigation of data properties, to compare empirical results across different estimators making different

assumptions about the DGP and thus to build up a general picture of the most likely processes driving

the data and the most suitable empirical strategy to account for these difficulties.
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OLS OLS FE FE FD FD LP ACF
(1) (2) (3) (4) (5) (6) (7) (8)

ln Lit 0.693∗∗ 0.713∗∗ 0.488∗∗ 0.695∗∗ 0.500∗∗ 0.572∗∗ 0.200∗∗ 0.612
4 ln Lit in (5), (6) (0.074) (0.076) (0.103) (0.084) (0.095) (0.088) (0.076) (0.536)

ln Kit 0.209∗∗ 0.194∗∗ 0.119∗ 0.140∗∗ 0.079 0.115∗∗ 0.333∗∗ 0.324
4 ln Kit in (5), (6) (0.057) (0.057) (0.060) (0.046) (0.047) (0.042) (0.090) (0.406)

Year dummies Incl. Incl. Incl.∑
coefficients 0.902 0.907 0.607 0.835 0.579 0.689 0.533 0.936

Test CRS 0.020 0.027 0.000 0.036 0.000 0.002 0.000
AB Test AR(1) 0.000 0.000 0.000 0.000 0.683 0.056
AB Test AR(2) 0.000 0.000 0.825 0.000 0.113 0.002
RMSE 0.909 0.864 0.437 0.353 0.439 0.405 n/a n/a

Observations 1,742 1,742 1,742 1,742 1,361 1,361 1,742 0.1,742

Table 1: Static production function estimates – Sample 1

Notes: Estimators employed are OLS, FE – Firm fixed Effects (within), FD – OLS with variables in first-differences, LP –
Levinsohn and Petrin (2003), ACF – Ackerberg, Caves and Frazer (2006). For OLS, FE, and FD, standard errors clustered by
firm, for OP, LP, and ACF we employ bootstrapped standard errors (OP and LP: 400 replications; ACF: 100 replications).
CRS – p-values for H0 (Constant Returns to Scale). AB Test – Arellano and Bond (1992) serial correlation test), p-values for
H0 (no serial correlation of order indicated). RMSE – root mean squared error, not computed for the multi-step structural
estimators.

OLS OLS FE FE FD FD OP LP ACF

(1) (2) (3) (4) (5) (6) (7) (8) (9)

ln Lit 0.643∗∗ 0.651∗∗ 0.567∗∗ 0.824∗∗ 0.684∗∗ 0.783∗∗ 0.590∗∗ 0.135 0.613∗
4 ln Lit in (5), (6) (0.086) (0.089) (0.128) (0.105) (0.115) (0.114) (0.089) (0.082) (0.262)

ln Kit 0.310∗∗ 0.302∗∗ 0.258∗∗ 0.162∗∗ 0.148∗ 0.061 0.067 0.428∗∗ 0.309
4 ln Kit in (5), (6) (0.073) (0.074) (0.071) (0.053) (0.064) (0.062) (0.044) (0.130) (0.359)

Year dummies Incl. Incl. Incl. Incl.∑
coefficients 0.952 0.953 0.825 0.986 0.832 0.843 0.657 0.563 0.922

Test CRS 0.283 0.291 0.133 0.874 0.148 0.116 0.000
AB Test AR(1) 0.000 0.000 0.000 0.022 0.044 0.580
AB Test AR(2) 0.000 0.000 0.079 0.000 0.400 0.007
RMSE 0.876 0.829 0.399 0.311 0.395 0.362 n/a n/a n/a

Observations 958 958 958 958 613 613 958 958 958

Table 2: Static production function estimates – Sample 2

Notes: Estimators employed are OLS, FE – Firm fixed Effects (within), FD – OLS with variables in first-differences, OP –
Olley and Pakes (1996), LP – Levinsohn and Petrin (2003), ACF – Ackerberg, Caves and Frazer (2006). For OLS, FE, and
FD, standard errors clustered by firm, for OP, LP, and ACF we employ bootstrapped standard errors (OP and LP: 400
replications; ACF: 100 replications). CRS – p-values for H0 (Constant Returns to Scale). RMSE – root mean squared error,
not computed for the multi-step structural estimators.
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Figure 1: Productivity as a function of capital & investment – OP (Sample 2)
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Figure 2: Productivity as a function of capital & intermed. inputs – LP (Sample 2)
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OLS FE AB0 AB? BB0 BB?
(1) (2) (3) (4) (5) (6)

ARDL estimates
ln Lit 0.616∗∗ 0.721∗∗ 0.710∗∗ 0.575∗∗ 0.551∗∗ 0.500∗∗

(0.080) (0.102) (0.238) (0.248) (0.186) (0.189)

ln Lit−1 -0.527∗∗ -0.237∗∗ -0.265 -0.010 -0.406∗∗ -0.302∗
(0.081) (0.081) (0.147) (0.157) (0.149) (0.154)

ln Kit 0.104∗∗ 0.063 0.157 0.393∗ 0.137 0.156∗
(0.041) (0.048) (0.155) (0.175) (0.149) (0.075)

ln Kit−1 -0.085∗ -0.039 -0.113 -0.175∗∗ -0.052 -0.065
(0.039) (0.036) (0.061) (0.071) (0.052) (0.054)

ln Yit−1 0.883∗∗ 0.308∗∗ 0.488∗∗ 0.356∗∗ 0.739∗∗ 0.646∗∗
(0.014) (0.059) (0.100) (0.111) (0.059) (0.066)

Year dummies Included in all models

Long-run estimates
β̂l 0.728∗∗ 0.694∗∗ 0.647∗∗ 0.604∗∗ 0.672∗∗ 0.624∗∗

(0.066) (0.095) (0.197) (0.221) (0.154) (0.155)

β̂k 0.133∗∗ 0.066 0.177 0.304∗ 0.106 0.129
(0.039) (0.048) (0.103) (0.148) (0.058) (0.062)

ρ̂ 0.893∗∗ 0.317∗∗ 0.501∗∗ 0.373∗∗ 0.735∗∗ 0.660∗∗
(0.013) (0.056) (0.095) (0.089) (0.055) (0.062)

AB Test AR(1) 0.503 0.591 0.000 0.001 0.000 0.000
AB Test AR(2) 0.025 0.000 0.725 0.461 0.770 0.858
Sargan Test 0.045 0.822 0.018 0.159
Diff Sargan 0.013 0.000
COMFAC 0.053 0.746 0.825 0.188 0.282 0.393
# Instruments 75 69 95 88
RMSE 0.393 0.294 0.489 0.647 0.413 0.445

Observations 1,361 1,361 1,014 1,014 1,361 1,361

Table 3: Dynamic production function estimates – Sample 1

Notes: Estimators employed are OLS, FE – Firm fixed Effects (within), AB – Arellano and Bond (1992) Difference GMM,
BB – Blundell and Bond (1998) System GMM. For OLS and FE standard errors clustered by firm, for AB and BB we use the
2-step estimator with the Windmeijer (2005) correction. COMFAC is a minimum distance test of the common factor
restrictions. p-values reported for all test statistics. In (1) we obtain long-run coefficients (standard errors) β̂l = .790 (.182)
and β̂k = .161 (.131) when the common factor restrictions are not imposed. AB0 and BB0 treat labour and lagged
value-added as endogenous and capital as predetermined. AB? and BB? are the preferred specifications of the respective
estimators, based on diagnostic testing (see discussion in the main text). For the BB estimator the Difference-in-Sargan
statistics test the validity of all the additional instruments employed for the levels equation. All long-run coefficients are
computed using the Minimum Distance estimator (code from Måns Söderbom) and employing the Delta method to obtain
standard errors (absolute values reported). ∗∗, ∗ indicate statistical significance at the 1% and 5% level. RMSE – root mean
squared error, computed for unrestricted model in the upper panel of the table.
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OLS FE AB0 AB? BB0 BB?
(1) (2) (3) (4) (5) (6)

ln Lit 0.818∗∗ 0.868∗∗ 0.891∗∗ 0.744∗∗ 0.991∗∗ 0.752∗∗
(0.100) (0.122) (0.233) (0.239) (0.133) (0.193)

ln Lit−1 -0.726∗∗ -0.323∗∗ -0.521∗∗ -0.397∗∗ -0.752∗∗ -0.517∗∗
(0.104) (0.089) (0.167) (0.155) (0.136) (0.156)

ln Kit 0.069 0.032 -0.190 0.016 0.044 0.309∗∗
(0.062) (0.063) (0.183) (0.167) (0.081) (0.130)

ln Kit−1 -0.050 0.009 0.075 0.064 -0.046 -0.036
(0.060) (0.059) (0.088) (0.079) (0.083) (0.124)

ln Yit−1 0.897∗∗ 0.344∗∗ 0.371∗∗ 0.265∗ 0.885∗∗ 0.538∗∗
(0.021) (0.078) (0.112) (0.118) (0.055) (0.098)

Year dummies Included in all models

β̂l 0.899∗∗ 0.885∗∗ 1.072∗∗ 0.857∗∗ 1.040∗∗ 0.767∗∗

(0.082) (0.113) (0.214) (0.232) (0.117) (0.189)

β̂k 0.085 0.031 0.028 0.109 -0.005 0.341∗∗

(0.061) (0.064) (0.147) (0.147) (0.071) (0.129)

ρ̂ 0.908∗∗ 0.353∗∗ 0.381∗∗ 0.334∗∗ 0.869∗∗ 0.607∗∗

(0.019) (0.067) (0.111) (0.113) (0.054) (0.086)

AB Test AR(1) 0.293 0.216 0.004 0.031 0.001 0.005
AB Test AR(2) 0.132 0.001 0.788 0.936 0.682 0.823
Sargan Test 0.244 0.414 0.096 0.379
Diff Sargan 0.440 0.205
COMFAC 0.336 0.935 0.056 0.113 0.071 0.305
# Instruments 75 69 95 68
RMSE 0.352 0.219 0.767 0.714 0.376 0.475

Observations 613 613 361 361 613 613

Table 4: Dynamic production function – Sample 2

Notes: See Table 3 for details. In (3) we obtain long-run coefficients (standard errors) β̂l = .588 (.413)
and β̂k = −.183 (.260) when the common factor restrictions are not imposed. In (5) we get
β̂l = 2.071 (1.253) and β̂k = −.024 (.722).
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Figure 3: Simulated Data – Difference in Slope Coefficients (Sample 1)

Notes: The histograms show (for labour and capital in the left and right column respectively) the distribution of the deviation
from the OLS coefficient estimates for the two-way fixed effects (top), first difference with year fixed effects (middle) and LP
estimator (bottom) for 200 iterations. For each estimator we created 200 bootstrap samples (independently across estimators)
and collect the slope coefficient estimates β̂l and β̂k. We then subtract the vector for each of the aforementioned estimators
from that of the OLS estimator. For ease of comparison we fixed the range of the labour plots and the capital plots to be the
same across estimators.
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Figure 4: Simulated Data – Slope Coefficients (Sample 1)

Notes: The graphs show the estimated distributions (Epanechikov kernel, bandwidth differs across series for improved
visibility) of the labour (left column) and capital (right column) slope estimates for the (i) OLS (blue solid line), (ii) 2FE
(black dash-dots), (iii) FD (green dots) and (iv) LP (red dashes) estimators. Methodology following LP.
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raw OLS OLS† FE 2FE LP ACF within OLS OLS† FE 2FE LP ACF

OLS 1.000 OLS 1.000
OLS† 1.000 1.000 OLS† 1.000 1.000
FE 0.745 0.750 1.000 FE 0.862 0.864 1.000
2FE 0.974 0.976 0.871 1.000 2FE 0.986 0.987 0.929 1.000
LP 0.771 0.773 0.975 0.878 1.000 LP 0.853 0.852 0.978 0.908 1.000
ACF 0.981 0.978 0.625 0.913 0.670 1.000 ACF 0.986 0.984 0.788 0.947 0.801 1.000

demeaned OLS OLS† FE 2FE LP ACF both OLS OLS† FE 2FE LP ACF

OLS 1.000 OLS 1.000
OLS† 1.000 1.000 OLS† 1.000 1.000
FE 0.736 0.741 1.000 FE 0.847 0.849 1.000
2FE 0.972 0.974 0.868 1.000 2FE 0.984 0.985 0.923 1.000
LP 0.761 0.763 0.974 0.873 1.000 LP 0.836 0.835 0.976 0.898 1.000
ACF 0.979 0.977 0.609 0.907 0.654 1.000 ACF 0.984 0.981 0.762 0.938 0.776 1.000

Table 5: TFP level correlations – Sample 1

Notes: We present the Pearson correlation coefficients for the TFP level estimates (raw, i.e. not logs) computed from the six
estimators indicated (n = 1, 742, N = 318). OLS † indicates the TFP estimates from an OLS model with year dummies. For
‘within’ we use TFP estimates in deviation from the firm-specific TFP-mean, for ‘demeaned’ we use TFP estimates in
deviation from the cross-section (time-specific) TFP-mean, for ‘both’ we use TFP estimates in deviation from the
cross-section and firm-specific TFP mean (we add the sample mean as is practice for a ‘2FE’ transformation.

Source of TFP estimates OLS OLS† FE 2FE LP ACF

(1) (2) (3) (4) (5) (6)

TFP level year 2000 3.511∗∗ 3.530∗∗ 5.161∗∗ 4.007∗∗ 5.009∗∗ 3.074∗∗
(63.09) (63.43) (83.80) (71.35) (80.47) (54.64)

year 2001 -0.155∗ -0.156∗ -0.183∗ -0.164∗ -0.180∗ -0.148
(1.99) (2.00) (2.12) (2.08) (2.07) (1.88)

year 2002 0.047 0.047 -0.001 0.034 -0.003 0.058
(0.59) (0.59) (0.02) (0.42) (0.04) (0.71)

year 2003 0.176∗ 0.176∗ 0.131 0.164∗ 0.125 0.183∗
(2.20) (2.20) (1.48) (2.03) (1.40) (2.27)

year 2004 0.321∗∗ 0.321∗∗ 0.309∗∗ 0.319∗∗ 0.301∗∗ 0.320∗∗
(3.97) (3.97) (3.46) (3.91) (3.33) (3.91)

year 2005 0.488∗∗ 0.489∗∗ 0.462∗∗ 0.485∗∗ 0.443∗∗ 0.486∗∗
(6.01) (6.02) (5.14) (5.91) (4.88) (5.91)

year 2006 0.622∗∗ 0.623∗∗ 0.605∗∗ 0.622∗∗ 0.578∗∗ 0.614∗∗
(7.56) (7.58) (6.64) (7.50) (6.28) (7.38)

year 2007 0.697∗∗ 0.697∗∗ 0.687∗∗ 0.694∗∗ 0.688∗∗ 0.700∗∗
(7.88) (7.88) (7.01) (7.77) (6.94) (7.82)

R-squared 0.10 0.10 0.08 0.10 0.08 0.09

Table 6: Shocks to TFP – Sample 1

Notes: We run OLS regressions (n = 1, 742) using TFP estimates backed out from various ‘first stage’ production function
models as the dependent variable: in column (1) OLS, (2) OLS † with year dummies, (3) one-way (firm) fixed effects, (4)
two-way fixed effects, (5) LP, (6) ACF. We report absolute t-statistics in parentheses, ∗∗, ∗ indicate statistical significance at
the 1% and 5% level.
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Source of TFP estimates OLS OLS† FE 2FE LP ACF

(1) (2) (3) (4) (5) (6)

PANEL A: Patents only

patent stock 0.0004 0.0005 0.0160 0.0016 0.0131 0.0001
(1.00) (1.01) (4.38)∗∗ (2.07)∗ (4.54)∗∗ (0.25)

Constant 64.201 65.447 372.006 106.067 315.569 41.934
(38.36)∗∗ (38.28)∗∗ (26.35)∗∗ (36.69)∗∗ (28.32)∗∗ (38.17)∗∗

R-squared 0.00 0.00 0.01 0.00 0.01 0.00

PANEL B: Add year dummies

patent stock 0.0004 0.0004 0.0159∗∗ 0.0015∗ 0.0131∗∗ 0.0001
(1.02) (1.03) (4.44) (2.13) (4.61) (0.24)

Constant 46.754∗∗ 47.694∗∗ 272.044∗∗ 77.614∗∗ 230.604∗∗ 30.314∗∗
(10.84) (10.82) (7.33) (10.38) (7.89) (10.70)

R-squared 0.07 0.07 0.04 0.07 0.05 0.07

PANEL C: Add region dummies

patent stock 0.0003 0.0003 0.0147∗∗ 0.0013 0.0122∗∗ 0.0000
(0.68) (0.69) (4.15) (1.80) (4.37) (0.11)

Constant 70.525∗∗ 71.989∗∗ 451.923∗∗ 119.297∗∗ 395.266∗∗ 45.038∗∗
(12.37) (12.36) (9.10) (12.06) (10.16) (12.02)

R-squared 0.13 0.13 0.08 0.12 0.10 0.13

Table 7: ‘Determinants’ of TFP illustration – Sample 1

Notes: We run OLS regressions (n = 1, 742) using TFP estimates backed out from various ‘first stage’ production function
models as the dependent variable: in column (1) OLS, (2) OLS † with year dummies, (3) one-way (firm) fixed effects, (4)
two-way fixed effects, (5) LP, (6) ACF. ‘patent stock’ is calculated as depreciation-free accumulation of patent applications
recorded by the European (EPO) and UK patent offices since 1982. In order to save space we do not report the coefficients on
the year dummies in Panels B and C or on the regional dummies in Panel C. Dependent and independent variables are in
levels, not logarithms. The pattern of results is very similar when we use all variables in logs (+0.001) and a dummy for
firms which never recorded any patent applications, and when we use the flow variable of patent applications (or its log plus a
‘no patent applications’ dummy). Due to the small magnitudes of standard errors we report absolute t-statistics in
parentheses, ∗∗, ∗ indicate statistical significance at the 1% and 5% level.
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A Data Appendix

A-1 Data

The data used for the analysis come from the ‘Financial Analysis Made Easy’ (FAME) database.a They

cover the entire population of registered UK firms (FAME downloads data from Companies House

records).b The FAME database is a commercial database provided by Bureau van Dijk.c The version

used here covers around 2.78 million active firms. For all of these firms, information such as name,

registered address, firm type, and industry code are available. Availability of financial information

varies substantially across firms. The smallest firms are legally required to submit only basic balance

sheet information such as shareholders’ funds and total assets. The largest firms provide a range of

profit and loss information as well as detailed balance sheet data. As a result, given the data required

to compute value added, the sample used for our productivity analysis covers mostly larger firms.d The

March 2009 version of the FAME database also lists around 1 million so-called ‘inactive’ firms. These

inactive firms were found to have exited the market and belong to one of the following categories:

dissolved, liquidated, entered receivership or declared non-trading. The fact that FAME tracks inactive

firms allows us to identify all firms exiting the market throughout the eight-year period of study, an issue

relevant to gauge the importance of selection bias in the productivity estimates.e

We limit the analysis to high-tech firms in the SIC (2003) 32 industry as shown in Table A-I.f We focus

on this narrowly defined industrial sector to allow for easier comparison across the various regression

models, since the structural estimators do not account for industry fixed effects. Table A-I shows the

number of registered firms in the UK in the industry as well as the number of firms in the sample used.

The fact that the sample contains only slightly more than 10% of the firms listed in FAME highlights

the limited availability of the data needed to estimate Cobb-Douglas production functions. This also

suggests that the sample available in FAME for the estimation of production function is most likely not

representative of the underlying population of firms because item non-response is a function of firm size.

This is an important caveat for work using this data source, in that the ‘external validity’ of the empirical

results obtained is at best tenuous and in many cases not given. The details involved in the construction

of the sample are discussed in the following.
aWe use the March 2009 edition of FAME.
bIn the remainder of this work we use firms to mean registered firms. Hence firm refers to the legal entity that organizes

production, in contrast to census-type data that uses the plant or production unit.
chttp://www.bvdep.com/en/FAME.html
dHarris and Li (2008) weight the FAME data using weights obtained from the Annual Respondents Database (ARD)

collected by the Office for National Statistics (ONS), claiming that the unweighted FAME database is not representative of
the population of firms in the UK due to under-representing small and medium-sized firms. Yet, the bias does not arise from
the lack of SMEs in the database but from the fact that no financial information is available on these firms as they are legally
not obliged to report the data to Companies House. Weighting assumes that the fact that small firms do not report financial
information is random, i.e., that the data is missing at random. This is unlikely to be the case, hence, weighting is unlikely to
solve the missing data problem. In the present case the median (mean) firm size is 107 (353) employees in our Sample 1 (see
discussion below) and 123 (443) employees in our Sample 2.

eIt avoids the common problem in stratified samples that missing observations are erroneously interpreted as having exited.
fFAME provides primary as well as secondary SIC codes for nearly all firms in the database. To select firms belonging to

the SIC 32 sector, we only use the primary SIC code.
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A-2 Variable Construction

All monetary variables obtained from FAME are expressed in thousands of British Pound Sterling and

are deflated to 1999 price levels using SIC 2-digit level deflators from UK National Statistics.g

Output – Value added

We use value added as a measure of firm output, which is computed as total sales (turnover) less material

costs.h The decision to use value-added as a measure for firm output is motivated mainly by the findings

of BS who suggest that identification of perfectly variable inputs is not possible without input price

variation across firms in a gross-revenue specification of the Cobb-Douglas production function.

As pointed out by Greenstreet (2007), single-deflated value-added, i.e., deflated nominal value-added,

is inappropriate as a measure for output since changes in relative prices of inputs and output would be

erroneously interpreted as changes in productivity. Instead, real value-added is computed from subtract-

ing real input from real output.i Since FAME does not report firm-level output prices, output is deflated

to 1999 price levels using SIC 3-digit industry-level producer price indices obtained from UK National

Statistics.j Intermediate inputs are measured as cost of sales which is directly available in FAME. The

measure for intermediate input is deflated using two-digit industry level input deflators from UK Na-

tional Statistics.k

It is important to stress that using deflated sales as a measure of output makes the underlying assumption

that firms face a perfectly competitive market environment. If firms are subject to imperfect competition

or offer differentiated products then even within a narrowly defined industrial sector of analysis, output

prices are significantly dispersed across firms as well as correlated with a firm’s inputs. Klette and

Griliches (1996) provide theoretical and empirical evidence suggesting that using deflated sales as a

measure of (unobserved) real output creates a downward bias in the production function parameters.

The authors illustrate how a firm’s omitted output price can be proxied by a firm’s output growth relative

to industry growth and therefore suggest to include growth in industry output in the firm-level production

function to correct for the omitted output price variable.

On the other hand, Mairesse and Jaumandreu (2005) provide evidence arguing that the availability of

firm-specific output prices and the econometrician’s ability to use them to compute real firm output has

little effect on the estimated coefficients. They point out that if changes in real output are only weakly

related to changes in output prices over time relative to the link between demand shocks and the other

possible determinants of demand, the correlation between output volumes and prices is weak and hence

also the correlation between prices and production inputs, thus mitigating the downward bias from using

industry deflators. At the same time, Mairesse and Jaumandreu point to another potential source of

bias arising from unobserved capacity utilization of firms. However, we do not have any direct way of
ghttp://www.statistics.gov.uk/statbase/TSDSeries1.asp
hWe alternatively also adjusted sales for changes in inventories, but this further reduces the number of firms for which there

is data available.
iAs noted above, Bruno (1984) pointed out that if productivity growth is the object of interest, the use of double-deflated

value added produces a negative bias in productivity growth (see also Basu and Fernald, 1995, 1997). However, Baily (1986)
suggests that the bias may be negligible in practice.

jhttp://www.statistics.gov.uk/statbase/TSDSeries1.asp
kibid.
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accounting for this given a lack of the necessary data.

Labour input

As labour input, FAME provides the number of full-time equivalent employees, recorded annually. Ide-

ally, a measure of hours worked should be used to measure labour input more accurately. Since no such

measure is available the number of full-time equivalent employees will have to serve as an imperfect

proxy.

Capital and Investment

Ideally, we would like to have a measure of current capital services instead of capital stocks, i.e., a

flow measure instead of a stock measure (Jorgenson and Griliches, 1967).l But no such measure for

capital services is readily available in FAME.m The implicit price of such service is the ‘user cost of

capital’ (or rental prices) which are usually unobserved. Therefore, we use capital stocks as a proxy.

This appears to be an acceptable choice under the assumption that the quantity of an asset held by a

firm is proportional to the quantity of the corresponding service obtained from that asset. For this to be

the case, the aggregate of a firm’s capital holdings should represent an average over various different

vintages and age groups of the capital employed. That this assumption may approximately hold in

practice is supported by empirical work by Shashua et al. (1974), who find that the bias resulting from

using capital stocks instead of flows is relatively minor for multiproduct firms. Hence, we assume that

the flow of capital services in time t is proportional to the capital stock in t.n

Capital input is measured as total tangible assets by book value, recorded annually. Tangible assets

include land and buildings, fixtures and fittings, plants and vehicles, and other tangible assets.o

Tangible assets are deflated by a producer price deflator at the 2-digit sector level. In order to compute
lThe flow of productive services coming from the cumulative stock of past investments is referred to as ‘capital services’

of an asset. Hence, the appropriate measure of capital input would be for example machine hours instead of the number of
machines.

mThe fundamental difficulty in measuring capital services lies in the fact that a firm usually owns the capital from which it
obtains the service (Jorgenson and Griliches, 1967). Therefore, no market transactions occur when the capital good is used to
‘deliver a service’.

nThere is evidence at the aggregate level for the UK for this to be a realistic assumption (Wallis and Turvey, 2009).
oIdeally, we would compute the implicit rental rates for each type of tangible capital which are then used to aggregate

the different types of assets into a single measure of capital services. The problem in FAME is that coverage for the overall
figure of tangible assets is already relatively low as only 74% of registered high-tech firms in SIC 32 report tangible asset data.
Given that a firm reports tangible assets, the share of firms reporting a break down of fixed assets into the different asset types
is prohibitively low. Nevertheless, for demonstration purposes, we also computed tangible capital in the following way: we
aggregate the different types of assets into a single measure for capital services by computing implicit capital rental rates in
real terms as suggested by Jorgenson and Griliches (1967)

Rjt =

(
rjt−πjt

1 + πjt
+ δ

)(
Pjt
Pct

)
(51)

As pointed out by Greenstreet (2007), variation in the measure of capital services must be due solely to variation in levels
of capital stocks. Hence, in order to avoid variation in the aggregate capital services measure to also come from variation in
Rjt, simple averages of Rjt for the entire period observed, 2000-2007, are computed. As a measure for rjt, as suggested by
Greenstreet (2007), we use bank lending rates as reported by the IMF International Financial Statistics (IFS) Series 60P.ZF.
The end of year capital services measure is computed as

Kt =

4∑
k=1

RjAjkt (52)

The problem is that FAME does not report the entire investment history of firms. Therefore, in order to compute the stock of
capital for the first period for which data on a firm is observed, we follow Greenstreet (2007) and compute the stock of assets
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investment, rather unconventionally, we use the perpetual inventory method, i.e. It = Kt+1−(1+δ)Kt,

where K is fixed assets deflated using a producer price deflator at the sector level. In order to determine

the rate of replacement of old capital goods, we have to assume a value for the depreciation parameter,

δ = 0.093, using an average of the figures suggested by the UK Office for National Statistics for the

components of fixed assets. This rather unconventional method of computing investment is preferable

in the case of FAME as very few firms report investment (16%) while information on fixed assets is

available for 51% of firms in the SIC 32 industry. Nevertheless, the lack of investment data reported by

firms is a serious shortcoming of the FAME data.

Data gaps and cleaning

We restrict the sample to firms for which there are at least two consecutive years of data available.

Moreover, we compute capital-labour and capital-output ratios and drop firms in the top and bottom

5 percentiles of the respective distributions to avoid the impact of outliers on our results. We discuss

sample attributes in greater detail in the following section.

A-3 Descriptives and Pre-Estimation Testing

We use two different samples for estimation. In the first sample, we include all firms that report sufficient

data to construct value-added, capital and labour inputs, which yields n = 318 firms with n = 1, 742

observations (‘Sample 1’). The second sample contains only firms for which we also have investment

data, which is necessary for the estimation of the OP method. This ‘Sample 2’ is made up of N = 214

firms with n = 958 observations, thus over 30% smaller. The main differences between the full and

reduced samples are higher average input and output levels for the restricted data set. Table A-II provides

summary statistics for both samples. Looking at the minimum values of value added and inputs in both

samples suggests that higher means in the reduced sample result from dropping firms at the lower end

of the respective distributions from the sample. Figure A-I shows that the distribution for the reduced

sample (in dashed blue lines) lies to the right of that for the full sample in all variable series considered.

This confirms the hypothesis that data coverage is correlated with firm size, thus we would expect

generally different empirical results between the two samples.

In Table A-III we furthermore provide information on the in-sample data coverage: for each of the

samples we provide information on the time-series length of the data series employed in the regressions

Ti. For Sample 1 we can compute an average of T = 5.5 observations per firm, for Sample 2 the

equivalent number is T = 4.5. Note how data coverage is much more varied in the latter, where only

18% of firms have 7 or 8 time-series observations (30% of observations); for Sample 1 45% of firms

fulfil the same criterion (60% of observations). The standard Fixed Effects estimator relies on within-

firm variation over time – we would thus expect systematic differences in its results between the two

for the initial time period t as

At = (1− δ)
[(

Dt
δ

)− (
It
2

)]
/Pbt +

[
It −

(
δ

2

)
It

]
/Pt (53)

where At denotes the value of a fixed asset at the end of period t. It denotes investment during period t, δ is the depreciation
coefficient and Dt denotes the share in assets that has depreciated between t − 1 and t. Pt denotes the average price deflator
during period t and Pbt is the price deflator at the beginning of period t. Depreciation rates are assumed to be six, two, and 20
percent for plant and machinery, buildings, and vehicles respectively as suggested by the UK Office for National Statistics. As
deflators, sector-level PPIs are used. In order to construct Pbt, geometric averages of deflators in t and t− 1 are computed.
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samples studied. Furthermore, 60 out of 318 firms (19%) in Sample 1 have at least one gap in their time-

series (of the 60 firms 3 have two gaps). For Sample 2, this rises to 111 out of 214 firms (52%; of the 111

firms 20 have two gaps). Curiously, the graphs in Figure A-II suggest that in the case of Sample 2 it is

the firms with missing observations that are systematically larger. Both of these findings have bearings

on the empirical results, in that we would expect to see differences between the static and dynamic

regression results, given the latter’s requirement of a continuous data series without gaps.

The scatter plots in Figure A-III display the relation between the output measure, value added, and

inputs in the two samples. The bivariate plots show a monotonic positive relationship between input and

output levels for all inputs, as should be expected. Moreover, there do not appear to exist any influential

observations.p

In order to highlight the time-series properties of the data we follow the suggestion of Blundell and Bond

(2000) and estimate simple AR(1) regressions for output and inputs. In all regressions we add a set of

T − 2 year dummies to take out the effect of common shocks. Our focus here is on the estimated level

of persistence, say ρ̂, in the data, as well as the pattern of these estimates across a number of empirical

estimators, namely OLS, Fixed Effects, AB Difference GMM and BB System GMM. Recall that high

persistence in the data raises the weak instrument problem in the AB estimator, whereby lagged levels

of variables are not sufficiently informative instruments for differences at time t. Table A-IV reports

the results for Sample 1 and Table A-V for the restricted Sample 2. Across all variables and samples

the OLS AR(1) estimates show signs of very high persistence, with all estimates of ρ̂ above .96. As

expected these estimates collapse in the Fixed Effects case due to Nickell bias. Weak instruments are in

evidence in the Difference GMM estimates, which are much closer to (and even below) the FE estimates

regardless of variable, sample or selected instrument set. The System GMM estimates confirm the high

levels of persistence in the data, even suggesting estimates for ρ̂ in excess of unity. In a longer panel the

latter finding would be indicative evidence for an explosive process in all variable series, but given the

nature of this panel (short T , gaps in the time series) we interpret this finding merely as strong evidence

for high levels of persistence in the data.

Finally, we also briefly return to the issue of firm exit touched upon in Section 2.1. In the full sample

of firms used, only 6 out of 318 firms (around 2%) included in the analysis exited the market during

the entire period 2000-2007. While this extremely low share underlines the concerns one should have

about using FAME data to learn about UK firm-level productivity,q it mitigates a possible bias from

sample selection through firm exit as suggested in OP. Also comparing the mean of the log of capital for

survivors, which is 7.15, to that for firms that exited, which is 8.49, suggests that firms that exited do not

have systematically lower capital levels. Similarly, the median of the log of capital for survivors is 7.11

and for firms that failed 8.08.

pWe ran robustness checks for the static and dynamic regressions in Sample 1 omitting the 5 largest firms which appear as
possible outliers in the first scatter plot for output-labour. Results are virtually identical to those we report below.

qActual exit rates are considerably higher. Looking at the entire cohort of UK firms incorporated in 2001, Helmers and
Rogers (2010) find that approximately 30% of firms exited by 2005.
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SIC Description No. firms No. firms %
Manufacture of in FAME in sample

32 Radio, television and communication equipment and apparatus 3,150 318 10.09%
321 Electronic valves and tubes and other electronic components 1,580 158 10.00%
322 Television and radio transmitters 604 92 15.23%
323 Television and radio receivers 966 68 7.04%

Table A-I: Industry descriptions

Mean Std.Dev. Min Max Obs
SAMPLE 1

ln Yit 8.568 1.529 3.307 14.828 1,742
ln Lit 4.774 1.265 1.098 9.313 1,742
ln Kit 7.184 1.799 1.828 14.881 1,742
ln Mit 9.152 1.670 3.414 15.299 1,742

SAMPLE 2
ln Yit 8.808 1.558 4.688 14.828 958
ln Lit 5.003 1.249 1.792 9.313 958
ln Kit 7.679 1.663 3.315 14.881 958
ln Iit 5.926 2.232 -4.013 15.800 958
ln Mit 9.414 1.682 3.959 15.299 958

Table A-II: Summary statistics

Notes: Sample 1 represents the full N = 318 firm sample, Sample 2 is the selection restricted to firms with investment data.
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     Notes: Solid red line: Sample 1 (N=318); Dashed blue line: Sample 2 (N=214).

Sample comparison: Variable distribution

Figure A-I: Density Plots – Comparing samples

Notes: The density plots (bandwidth .29 imposed on all plots) compare the distribution of the production function variables
between (a) firms in the larger Sample 1 (solid red lines), and (b) firms in the restricted Sample 2 (dashed blue lines).
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SAMPLE 1 SAMPLE 2
Ti obs share firms obs share firms
2 88 5.1% 44 78 8.1% 39
3 108 6.2% 36 96 10.0% 32
4 144 8.3% 36 204 21.3% 51
5 160 9.2% 32 125 13.1% 25
6 180 10.3% 30 168 17.5% 28
7 406 23.3% 58 175 18.3% 25
8 656 37.6% 82 112 11.7% 14

Total 1,742 100.0% 318 958 100.0% 214

Table A-III: Data coverage

Notes: Sample 1 represents the full N = 318 firm sample, Sample 2 is the selection restricted to firms with investment data.
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     Notes: Solid red line: no gaps in firm's time series data; Dashed blue line: gaps in the time series data.

Sample 1: Variable distribution
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     Notes: Solid red line: no gaps in the firm's time series data; Dashed blue line: gaps in the time series data.

Sample 2: Variable distribution

Figure A-II: Density Plots – Comparing samples

Notes: The density plots (bandwidth .29 imposed on all plots) compare the distribution of the production function variables
between (a) firms for which we have data without gaps in their time-series data on the one hand and (b) firms which do have
one or two gaps in their time-series data on the other.
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Figure A-III: Scatter plots – Value added and inputs
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OLS FE AB(t-2) AB(t-3) BB(t-2) BB(t-3)
(1) (2) (3) (4) (5) (6)

VALUE ADDED

ln Yit−1 0.963∗∗ 0.454∗∗ 0.663∗∗ 0.647∗∗ 0.967∗∗ 0.685∗∗

(0.008) (0.062) (0.155) (0.156) (0.067) (0.109)

AB Test AR(1) 0.983 0.580 0.002 0.003 0.000 0.000
AB Test AR(2) 0.082 0.000 0.331 0.338 0.178 0.302
Sargan Test 0.222 0.417 0.103 0.014
Diff Sargan 0.051 0.015

LABOUR

ln Lit−1 0.983∗∗ 0.685∗∗ 0.527∗∗ 0.663∗∗ 1.175∗∗ 1.170∗∗

(0.006) (0.037) (0.160) (0.208) (0.062) (0.068)

AB Test AR(1) 0.000 0.440 0.383 0.296 0.000 0.007
AB Test AR(2) 0.593 0.000 0.207 0.230 0.108 0.117
Sargan Test 0.271 0.221 0.054 0.324
Diff Sargan 0.002 0.575

CAPITAL

ln Kit−1 0.992∗∗ 0.699∗∗ 0.487∗∗ 0.645∗∗ 1.131∗∗ 1.148∗∗

(0.006) (0.026) (0.130) (0.176) (0.045) (0.051)

AB Test AR(1) 0.000 0.116 0.044 0.031 0.000 0.000
AB Test AR(2) 0.293 0.009 0.955 0.902 0.733 0.730
Sargan Test 0.382 0.497 0.117 0.210
Diff Sargan 0.035 0.109

Observations 1,361 1,361 1,014 1,014 1,361 1,361

Table A-IV: AR(1) Estimates – Sample 1

Notes: Estimators employed are OLS, FE – Firm fixed Effects (within), AB – Arellano and Bond (1992) Difference GMM,
BB – Blundell and Bond (1998) System GMM. All models include year dummies (coefficients not reported). We report
p-values for all test statistics (serial correlation, Sargan and Difference-in-Sargan tests). Standard error in parentheses, ∗∗, ∗

indicate statistical significance at the 5% and 1% level respectively.
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OLS FE AB(t-2) AB(t-3) BB(t-2) BB(t-3)

(1) (2) (3) (4) (5) (6)

VALUE ADDED

ln Yit−1 0.965∗∗ 0.439∗∗ 0.416∗ 0.333∗ 1.136∗∗ 0.873∗∗

(0.013) (0.083) (0.171) (0.164) (0.102) (0.125)

AB Test AR(1) 0.050 0.835 0.146 0.250 0.006 0.009
AB Test AR(2) 0.223 0.011 0.649 0.774 0.212 0.264
Sargan Test 0.041 0.050 0.013 0.008
Diff Sargan 0.018 0.021

LABOUR

ln Lit−1 0.968∗∗ 0.496∗∗ 0.360∗∗ 0.397 0.871∗∗ 0.662∗∗

(0.011) (0.098) (0.178) (0.229) (0.087) (0.190)

AB Test AR(1) 0.002 0.617 0.963 0.939 0.007 0.335
AB Test AR(2) 0.512 0.083 0.525 0.494 0.142 0.179
Sargan Test 0.370 0.330 0.487 0.797
Diff Sargan 0.413 0.960

CAPITAL

ln Kit−1 0.967∗∗ 0.574∗∗ 0.402∗∗ 0.265∗ 0.993∗∗ 0.730∗∗

(0.009) (0.076) (0.123) (0.121) (0.045) (0.226)

AB Test AR(1) 0.061 0.479 0.328 0.605 0.103 0.236
AB Test AR(2) 0.422 0.080 0.101 0.108 0.166 0.157
Sargan Test 0.258 0.182 0.194 0.495
Diff Sargan 0.105 0.278

Observations 613 613 361 361 613 613

Table A-V: AR(1) Estimates – Sample 2

Notes: See Table A-IV for details.
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B Further Production Function Estimators

B-1 Transformations of the empirical specification

Given the panel structure of the data, the earliest solutions to the unobserved heterogeneity and endo-

geneity problems involved employing firm fixed effects (typically via the ‘within’-transformation) or an

empirical specification with variables in first differences. In the former case this is because the time-

series average of time-invariant ηj is simply ηj itself, so that the transformation z̃jt = zjt − T−1
∑

t zjt

does away with the firm-level effect. In the latter case taking first differences of the time-invariant ηj
has the same effect. For endogeneity to be brought under control as a result of these transformation, it is

necessary to assume no further firm-specific productivity shocks, (ωjt = 0∀ j, t). Thus the unobserved

productivity differences across firms are assumed to be constant over time, with any increase in TFP

affecting all firms in equal terms. Therefore any productivity increase over time, captured in the model

by γt and empirically implemented via year dummies, must disseminate to all firms equally and within

the same time period t. A perhaps more sensible view of the assumptions imposed is that there do exist

firm-specific productivity shocks (ωjt) but that the factor inputs are strictly exogenous with respect to

these, implying E[ωjtkjs] = 0 and E[ωjtljs] = 0 ∀ s, t (Wooldridge, 2009). This strict exogeneity as-

sumption provides the motivation for the dynamic panel data models described below, since it rules out

dynamics in inputs and productivity.

Under these assumptions the transformed production function can be estimated using OLS.r From a

theoretical standpoint, the assumption of constant productivity differences across firms is quite unreal-

istic, while from practical experience the fixed effects or first difference estimators commonly perform

poorly, often leading to the collapse of the capital coefficient vis-à-vis the OLS results (β̂FEk � β̂OLSk )

and indicating severely decreasing returns to scale (β̂l + β̂k � 1). Note that large decreasing returns

to scale imply that firms “consistently price output below marginal cost, which obviously makes no

economic sense” (Basu and Fernald, 1997: 251). Aside from transmission bias, this pattern is likely

induced by measurement error in the input variables, whose impact is exacerbated by the variable trans-

formation.s Using fixed effects, within-transformation or first-differences has the additional drawback

of removing substantial information from the data, since only variation over time remains to identify the

parameters.

In other empirical contexts researchers are often comparing results for the standard fixed effects esti-

mator and the alternative ‘random effects’ or ‘generalised least squares’ (GLS) estimator.t The latter

provides a consistent and efficient estimator under the strong assumption that the firm-specific effects

(ηj) are random, meaning that – in a sample containing firms from different sectors – productivity levels

for, say, garment manufacture are just as likely to be higher than for computer chip manufacture as the

reverse. This assumption entails the further implication that firm-specific effects are not correlated with

input choice, i.e., strictly exogeneous: E[ηjkjt] = 0 and E[ηjljt] = 0 ∀ t. As a result the GLS estimator

is seldom applied in the study of firm-level productivity.
rIdeally clustering standard errors at the firm-level since the differenced or within-transformed errors are serially correlated.
sAssuming that serial correlation in the measurement errors is close to zero, while serial correlation of true unobserved

inputs is positive.
tThis estimator also fits our section headline since it is commonly implemented via ‘θ-differencing’ where variables are

transformed accounting for the variance of the firm-level effects and the remainder of the residuals respectively (obtained in a
first stage regression).
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B-2 Standard IV regression

One potential solution to the transmission bias problem is to use input prices (r, w) as instruments for

input quantities (k, l). Endogeneity concerns are commonly more focused on the capital stock variable,

s.t. instrumentation applies predominantly to rental rates. From a firm’s first-order conditions (see the

example for labour in the main text), it can be argued that (lagged) input prices are informative instru-

ments for input quantities, i.e., there exists at least a partial correlation between r and k, or w and l if

we run of a regression of k (l) on all other variables included in the production function as well as r (w).

Furthermore, for input price series to be valid instruments, it is required that they are uncorrelated with

unobserved productivity, i.e., they are mean-independent, thus Cov[rjtωjt] = 0 and Cov[wjtωjt] = 0.u

If input markets are perfectly competitive, then a single firm’s actions do not affect market prices and

hence the validity restriction should hold. Empirically, as well as conceptually, this assumption is how-

ever hard to defend: firstly, input prices are required to be firm-specific and need to display considerable

variation across j in order to identify heterogeneous input choices in the first stage of the IV regression,

which is unlikely, at least in developed market economies: if perfect competition prevails, it is likely

that there are no differences in prices across firms, making it impossible to identify kj in the first stage

regression since (empirically-speaking) all we have is r (instead of rj). Secondly, the perfect competi-

tion assumption is however likely to be violated in that firms with higher unobserved productivity are

likely to wield considerable market power and thus more command over input prices. While this solves

the homogeneous price problem of instrumentation, it also induces correlation between productivity and

prices, thus invalidating the latter as viable instruments. Thirdly, related to wages as instrument for

labour input, a higher ‘input price’ w at the firm-level may be the result of higher unobserved worker

quality (e.g. efficiency wage argument). This unobserved worker quality also enters the unobserved

productivity term ωj , thus leading to invalid instruments. Similar concerns about unobserved quality of

inputs apply for rental rates and capital stock.

There may, of course, exist other candidate variables than input prices for instrumentation. While con-

vincing external ‘z’-variables are common in other empirical applications, no clear contenders have

emerged in the production function literature.

B-3 Wooldridge (2009) 1-step estimator

Wooldridge (2009) suggests to implement the OP model in a single step by estimating the following

equations simultaneously

yjt = β0 + βlljt + βkkjt + f1(ijt, kjt) + εjt (54)

and yjt = β0 + βlljt + βkkjt + f2(ijt−1, kjt−1) + (ξjt + εjt), (55)

where fi(·) (i ∈ (1, 2)) are unknown (non-linear) functions of the instruments: f1(ijt, kjt) has been de-

fined above and f2(·) is defined as f2(ijt−1, kjt−1) = E[ωjt|ωjt−1] = ωjt + ξjt. The two corresponding

uThis is referred to as the ‘exclusion restriction’, with the instruments z (here rjt and wjt) being the variables ‘excluded’
from the ‘structural equation’ (here: the production function in Equation 9).
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population moment conditions are defined as

E[(ξjt + εjt)|f1(kjt, ljt, ijt, kjt−1, ljt−1, ijt−1, ..., kj1, lj1, ij1)] = 0 (56)

and E[(ξjt + εjt)|f2(kjt, kjt−1, ljt−1, ijt−1, ..., kj1, lj1, ij1)] = 0, (57)

for t = 1, 2, ..., T . Hence, the two moment restrictions are written in two equations with the same

dependent variable but different instrument sets. In Equation (56), capital, labour, and investment, their

lagged values and any (non-linear) functions of these variables enter the instrument set, whereas in

Equation (57) contemporaneous labour and investment are excluded from the instrument set.

The main advantage of this one-step approach is that standard errors can be obtained relying on the

standard GMM framework. This advantage may be important because in the original OP framework,

inference is based on bootstrapped standard errors which may be unreasonably large in the case of

strongly unbalanced datasets (since bootstrapping requires sampling with replacement) – see our discus-

sion in Section 3 of the main text. It also improves efficiency of the estimates because contrary to the

two-step OP estimator, it uses information from correlation across the two equations and furthermore

an optimal weighting matrix accounts for serial correlation and heteroscedasticity. Moreover, it allows

for straightforward testing of overidentification restrictions (validity of the identification assumptions

made). Note that this estimation strategy carries over in a straightforward manner to the LP and ACF

estimators.
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C Adjustment costs and the identification of Cobb-Douglas
production functions (Bond and Söderbom, 2005)
Consider a firm’s intertemporal maximization problem described by the following Bellman Equation

Vjt(kjt, ljt) ≡ max{π(kjt, ljt)− ck(kjt, ijt)− cl(ljt, hjt)

+θE[Vt+1(kjt+1, ljt+1) | kjt, ljt, ijt, hjt]} (58)

where ck(·) and cl(·) are cost functions for capital and labour respectively, hjt gross hiring, ijt gross

fixed capital formation (investment) and θ is a (common) discount factor. Crucially, Bond and Söderbom

(henceforth BS) assume both capital and labour to be dynamic inputs for all firms

kt = (1− δ)kt−1 + it (59)

lt = (1− q)lt−1 + ht (60)

where δ and q denote depreciation and labour drop-out respectively, which are determined exogenously.

All firms face exogenous prices which are the same across firms. The equations of motion (59) and (60)

can be used to replace the respective inputs in (58). Differentiating the resulting expression with respect

to control and state variables gives four first order equations. Denoting shadow values of capital and

labour as λkt = 1
1−δ

∂Vt(·)
∂kt−1

and λlt = 1
1−q

∂Vt(·)
∂lt−1

, the first order conditions can be used to obtain

∂πt
∂kt
− rt

∂ck
∂kt

= λkt

[
1− (1− δ)θEt

(
∂λkt+1

∂λkt

)]
(61)

∂πt
∂lt
− wt

∂cl
∂lt

= wt + λlt

[
1− (1− q)θEt

(
∂λlt+1

∂λlt

)]
(62)

Equations (61) and (62) show that in the absence of adjustment costs, the shadow price of capital would

equal its price rt and the shadow price for labour would be zero. The dynamic component becomes

evident through the term
(∂λit+1

∂λit

)
with i ∈ [k, l], as this represents current and future realisations of

the shadow value. In addition (61) and (62) imply that the shadow values depend on the unobserved

productivity shock through the profit function π(·). Hence, adjustment costs introduce variation in the

observed input levels across firms due to the dynamic characteristic of inputs and their dependence on

the contemporaneous and past unobserved productivity shocks without imposing any requirement of

serial correlation on the productivity shock itself. Obviously, the fundamental simultaneity problem is

still present and current input levels still depend on the current unobserved productivity shock. What is

gained from the presence of adjustment costs is variation within and across firms in their input levels

for capital and labour. BS argue that the System GMM estimator discussed above is able to identify

the parameters because of the dynamic implications of adjustment costs as evident from (61) and (62).

Hence, the crucial assumption to achieve identification through the System GMM estimator is the dy-

namic nature of the input variables. This implies that past input levels are informative instruments for

current levels. These instruments should also be valid as past levels should be uncorrelated with current

realizations of the productivity shock.
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