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I Introduction

‘[Alssumptions of a common production function, and perfect and competitive factor markets ... get in the way of
understanding international differences in productivity — particularly differences between advanced and underdeveloped
economies.” (Nelson, 1968, p.1229)

Ever since Hayami and Ruttan (1970) introduced the use of panel data to estimate cross-
country production functions for the agriculture sector, academic studies have emphasised
the conceptual desirability of technology heterogeneity across countries to reflect the sizeable
differences in agro-climatic environment, agricultural output mix and level of commerciali-
sation observed.! The literature further highlighted the potential for barriers to technology
transfer between countries that are specific to the agricultural sector, in particular the prob-
lems of transfers between the developed countries of the temperate ‘North” and the develop-
ing countries of the arid or equatorial ‘South’. From a theoretical standpoint the assumption
of differential technology across countries therefore seems almost a given, rather than merely
an extension worth considering. In practice, however, perhaps due to the constraints im-
posed by estimation techniques or data availability, the empirical investigation of agricultural
productivity was typically based on models which imposed technology homogeneity across
countries, or only allowed for heterogeneity by splitting the sample into crude geographical
groups. We highlight this seeming mismatch between theory and empirics in our title: if
these concerns were unimportant and a single common production function could be applied
to characterise global production, then this would be somewhat akin to saying we would
expect to see the cultivation of mangos in the Tundra.?

The assumption of a homogeneous production function may mask or distort important
insights into development, as the above comment by Nelson (1968) suggests. Hayami and Rut-
tan (1970) argue that Nelson’s comment (which referred to manufacturing) equally applies
to the analysis of agricultural production. Their approach further highlights the implications
of and anecdotal evidence for technology being endogenous to the prevailing ‘economic sys-
tem’, namely the

‘differential diffusion of agricultural technology. .. [and] of the scientific and technical capacity to invent and
develop new mechanical, biological, and chemical technology specifically adapted to the factor endowments
and prices in a particular country or region.” (Hayami and Ruttan, 1970, p.898)

Alternative conceptual arguments in favour of a heterogeneous production function point to
the difference in output structure (wheat vs. rice vs. livestock) and in the commercialisation
of agriculture (subsistence vs. industrialised farming), both of which are functions of the level
of development and productive specialisation across countries. This aside, the commonly ap-
plied proxies for production inputs represent a mix of very broad (land, labour) and very
specific inputs (fertilizer, tractors for capital stock). One could therefore argue that attempts
at capturing this observed and induced heterogeneity in an aggregate agricultural production
function cannot succeed if merely unobservable Total Factor Productivity (TFP) is allowed to
differ across countries. In addition to technology heterogeneity, these considerations high-
light potential limits to technological spillover from innovations between countries with very
different agro-climatic makeup and resource endowment. Much of agricultural technology
has to be viewed as location-specific, with attempts at direct technology transfer from one

Here and in the remainder of the paper we refer to heterogeneity in ‘technology parameters’ to indicate
differential production function parameters on observable factor inputs across countries.

2Tundra refers to the agro-climatic zone bordering the Arctic (the far north of North America and Eurasia)
characterised by permafrost and low levels of natural vegetation. According to the US National Mango Board
mangos originated in Southeast Asia and India, and the latter still dominates world production today.



agro-climatic region to another largely doomed to failure (Ruttan, 2002).

In this paper we extend the insights gained from the emerging literature on multi-factor
models in nonstationary panels to cross-country empirical productivity analysis in the agri-
cultural sector. We adopt a common factor model approach and estimate production functions
for a panel of 128 developing and developed countries using annual data from 1961 to 2002
(FAO, 2007). The common factor approach is uniquely suited to macro productivity analysis
(Bai, 2009; Chudik, Pesaran and Tosetti, 2011) where the impact of unobservables on output is
conceptualised as TFP and treated as a ‘measure of our ignorance’ (Abramowitz, 1956). The
framework allows for a rich set of cross-section correlations which are deemed pervasive in
macro panel data, arising from common shocks and/or spillover effects, the latter determined
for instance by trade, policy or shared cultural/social heritage. Our focus in the empirical
part of this paper is on the changes in the parameter estimates and diagnostic test results
when we move between pooled and heterogeneous estimators, between methods which ig-
nore cross-section dependence and those which accommodate it, and between approaches
that put different emphasis on the time-series properties of ‘long’ panels.

The relevance of concerning ourselves with an appropriate empirical representation of
agricultural productivity at the macro level is clear given the renewed interest in sectoral
development as well as the link between agricultural productivity and aggregate economic
growth and/or poverty reduction in the literature (e.g. Block, 2010; Gollin, 2010). This aside,
studies of the structural transformation within countries and its link to economic develop-
ment, building on the dual economy model by Lewis (1954), crucially rely on a valid rep-
resentation of agricultural technology and productivity in cross-country empirical analysis
(Vollrath, 2009a; Eberhardt and Teal, forthcoming).

Our paper makes three contributions to the literature on agricultural productivity at the
macro level: (i) we demonstrates that failure to account for technology heterogeneity leads to
misspecified empirical models, with serious implications for any TFP estimates obtained; (ii)
we show that previous findings of decreasing returns to scale at the global level are an artefact
of this empirical misspecification; (iii) we open up the black box of unobserved heterogeneity
and analyse a number of hypotheses for the processes driving cross-country correlation and
spillovers. Our results suggest that agro-climatic environment provides more convincing
evidence than purely spatial concerns of neighbourhood or distance.

Our study also speaks to the much-maligned cross-country growth literature (Durlauf,
Johnson and Temple, 2005) by providing a step-by-step approach to the empirical analysis of
macro panel data. This approach is concerned with (i) a more flexible framework to allow
heterogeneity across countries, (ii) a concern for the underlying data properties (nonstation-
arity, cross-section correlation) and thus for diagnostic testing of rival empirical models, and
(iii) the robustness of the estimation to variable endogeneity and reverse causality, which has
rightly been a focus of the existing literature albeit to the detriment of any other matters
related to empirical specification (Eberhardt and Teal, 2011).

The remainder of the paper is organised as follows: Section II sketches the existing applied
literature. Section III introduces the empirical model, our extension to the CCE estimators
and the data. Section IV presents and discusses the main empirical results; a number of
important questions related to the direction of causation are investigated in Section V. Section
VI concludes.



II Related Studies on Agricultural Productivity

Following the seminal contribution by Hayami and Ruttan (1970, 1985) the literature on agri-
cultural productivity analysis across countries using panel data or ‘repeated cross-sections’
can be broadly distinguished by two aspects. The first relates to the data used, the second
to the empirical restrictions placed on production technology: whether countries are allowed
to have differential technology parameters, TFP levels and evolution, and whether constant
returns to scale are imposed. While our review is by no means exhaustive, we believe that the
studies in Table A-2 of the Appendix capture the breadth of the empirical field at the present
time.

Most cross-country studies on agriculture use the data provided by the Food and Agri-
culture Organisation (FAO) which contains output and input variables for a large number of
countries from 1961 onwards, but relies on tractors and agricultural machinery as a proxy for
agricultural capital (e.g. Craig, Pardey and Roseboom, 1997; Cermefio, Maddala and True-
blood, 2003; Bravo-Ortega and Lederman, 2004). The alternative to this is a dataset developed
by World Bank researchers (Larson, Butzer, Mundlak and Crego, 2000) which provides agri-
cultural fixed capital stock data for up to 57 developing and developed countries from 1967 to
1992 (an update covers 1972-2000 for 30 countries). We highlight this difference since with the
notable exception of Martin and Mitra (2002) all empirical studies which use the World Bank
dataset(s) obtain very high capital coefficients, typically between .35 and .6.> In contrast,
all studies using the FAO data with tractors proxying for fixed capital stock obtain capital
coefficients in the range .05 to .2.

The second major aspect, relating to technology heterogeneity, has commonly been limited
to the modelling of TFP. Technology heterogeneity across countries has either been ignored
(Hayami and Ruttan, 1970; Craig et al., 1997, Martin and Mitra, 2002) or approached by
splitting the sample into "homogeneous groups’, e.g. by level of development (Hayami and
Ruttan, 1985; Cermefio et al., 2003; Gutierrez and Gutierrez, 2003). The work by Mundlak,
Larson and Butzer (1999, 2008) as well as Vollrath (2009b) represents an exception in this
regard, in that they recognise the potential for technology differences across countries and
attempt to highlight their importance for empirical analysis. Although many of these studies
stress the importance of allowing for production technology to differ across countries, none
of them investigates this in a manner which allows for full heterogeneity for technology
parameters as well as TFP.

Closely linked to the empirical specification of production technology is the treatment
of returns to scale.* The underlying returns to scale of agricultural production affect the
size-distribution of farms within an economy, however, we can also think of a number of
constraints, e.g. insecure legal environment or variations in land tenure arrangements, that
influence both of these processes in a similar fashion. For cross-country analysis findings
of increasing, decreasing or constant returns to scale (all of which are present in Table A-2)
are typically justified with reference to micro-econometric studies or the structural change
within countries witnessed over the sample period. Hayami and Ruttan (1985) argue that
increasing returns in developed economies are linked to the indivisibility of fixed capital,

3The Martin and Mitra (2002) paper arrives at a much lower coefficient of .12. Given that the methods applied
are similar this discrepancy may be caused by the alternative deflation strategy applied in Martin and Mitra
(2002). Similar to the practice in the FAO data, the authors advocate the use of a single LCU-US$ exchange rate
(base year 1990) in favour of using annual exchange rates as implemented in the Larson et al. (2000) data.

“Imposition of constant returns is at times argued to be inherently problematic given the presence of a fixed
factor input (land) in the agricultural production function. However, this characteristic does not prevent constant
returns to all (fixed and variable) inputs, which implies decreasing returns to variable inputs (Graham and Temple,
2006).



which has played an increasingly important role in the substitution of labour in these coun-
tries. The constant returns in their developing country sample is said to be the outcome of
increasing population pressure on land, with efforts to increase productivity directed toward
saving land by applying more fertilizer, chemicals or improved seeds. Since these inputs are
highly divisible, the authors argue, it is not surprising to encounter constant returns in this
subsample.

The paper by Gutierrez and Gutierrez (2003) to the best of our knowledge represents
the only study which accounts for time-series properties of the data, using nonstationary
panel econometric methods, while most other studies favour pooled OLS or LSDV /within
estimators. As in common with the vast majority of cross-country empirical analysis, none
of the studies reviewed considers the impact of cross-section dependence in the data on
empirical estimates. The presence of such dependence can result in misleading inference
and even inconsistency in standard fixed effects panel estimators favoured in this literature
(Phillips and Sul, 2003; Bai, 2009; Kapetanios, Pesaran and Yamagata, 2011).

In recent work Vollrath (2009b) develops the idea of technology heterogeneity in agricul-
ture by highlighting differential agro-climatic environment and output structure (e.g. crops
vs. livestock). His results — focused on the labour coefficient — highlight considerable tech-
nology heterogeneity across continents, climate zones and country groups. Note that with
the exception of Gutierrez and Gutierrez (2003) and Vollrath (2009b) this literature largely
sidesteps concerns over variable endogeneity and the bias induced.

This concludes our brief sketch of the literature on the inter-country production function
in agriculture, where we limited ourselves to studies employing linear parametric regressions.
Frontier estimation and nonparametric efficiency estimation strategies have also been used in
this literature (e.g. Coelli and Rao, 2005), however this approach neglects two of the fun-
damental issues we highlight in this study, namely cross-section correlation and the salient
time-series properties of the data (Schmidt, 2009). The adoption of growth/productivity ac-
counting is another strategy (e.g. Restuccia, Yang and Zhu, 2008), however this methodology
cannot disentangle the underlying endogeneity problem, such that inputs cannot be argued
to cause output (Gollin, 2010). Our empirical strategy will attempt to address these concerns.

III' Econometric Strategy and Implementation

Empirical Model

We model production in country i at time t employing a Cobb-Douglas production function
Y = Aithi where Y is agricultural output, X is a set of observed inputs and A is unobserved
TFP. The technology parameters f; are constant over time but can differ across countries.®

Our empirical framework builds on a common factor representation of the log-linearised
production function. Fori=1,...,N,t=1,...,Tand m =1,...,k let

Vie = PBixip+uy Uiy = o + Aj fi + €it 1)
Xmit = Tlyi + 51/%1‘ Smt + P1mi flmt + .o+ Onmi fnmt + Omit )
fi=dfi1+e and g =«'g1+e€ 3)

where f.,; C f;. We follow the existing literature and include (proxies for) labour, agricul-
tural capital stock, livestock, fertilizer and land under cultivation as the m observed inputs x;;
in our model for observed output y;; (all variables in logarithms). Unobserved agricultural

5In order to address concerns about parameter nonconstancy we carry out a robustness test using recursive
estimation — see Figure 2 in the Technical Appendix.



TFP is represented by a combination of country-specific TFP levels a; and a set of common
factors f; with factor loadings that can differ across countries (A;).6

We also introduce an empirical representation of the observed inputs in equation (2) in
order to indicate the possibility for endogeneity: the input variables x;; are driven by sets of
common factors g, and fy,¢, whereby the latter may represent a subset of the factors driving
output. This overlap of common factors creates severe difficulties for the identification of the
technology parameters B; (Kapetanios et al., 2011, Remark 5).”

Equation (3) indicates that the factors are persistent over time, which allows for non-
stationarity in the factors (¢ = 1, ¥ = 1) and thus the observables. This implies various
combinations of cointegration: between output y and inputs x; between output y, inputs x
and (some of) the unobserved factors f; or none of the above (noncointegration). Note that
we allow for the possibility of nonstationary TFP, which seems desirable given the nature of
technological progress (Bond, Leblebicioglu and Schiantarelli, 2010).

The use of annual time-series data commonly raises concerns regarding the distorting
influence of business cycles on estimation results (Durlauf et al., 2005), such that analysis is
typically carried out on time-averaged data. The common factor model approach is uniquely
suitable to deal with any business cycle or resulting capacity utilization effects, whether they
represent idiosyncrasies of a small number of economies, or global business cycles: in the
former case we can appeal to the Chudik et al. (2011) result whereby an infinite number of
‘weak factors” may be introduced to the model to capture local spillover effects. In the latter
case a ‘strong factor’ (i.e. of the nature we have assumed throughout) can be used to model
the heterogeneous impact of a global shock.®

The common factor model framework is arguably ideally suited for the analysis of cross-
country productivity (Bai, 2009; Chudik et al., 2011) but has thus far not been applied very
widely (e.g. Cavalcanti, Mohaddes and Raissi, 2011; Eberhardt, Helmers and Strauss, forth-
coming). All of the above concerns are founded in econometric theory and empirical obser-
vation (nonstationarity, cross-section correlation), with the specific concerns over technology
heterogeneity in agriculture motivated by our discussion in the introduction as well as more
generally by the ‘new growth theory’ (see Temple, 1999).

Empirical implementation

Our empirical implementation follows a philosophy whereby various regression models with
differing restrictions on parameters and assumptions about residual distribution are com-
pared and contrasted. With reference to our empirical model in equations (1) to (3) this
implies different assumptions regarding B;, A;, «; as well as the persistence of the underlying
common factors. In the pooled model we estimate OLS with year dummies, two-way fixed
effects (2FE) and the Pesaran (2006) common correlated effects (CCE) pooled estimator; these
all assume common slope parameters 8; =  and impose different restrictions on TFP evolu-
tion via fixed effects («;) and the impact of common factors (A;). In the heterogeneous models
we implement the Pesaran and Smith (1995) Mean Group (MG) and the heterogeneous ver-
sion of the CCE estimators (CCEMG), both of which allow for heterogeneous slopes (j;) but

®In contrast to other applications where they are seen as a nuisance these factors with heterogeneous impact
are a central interest in productivity analysis since they collectively represent TFP evolution over time.

"The literature on productivity analysis at the firm-level refers to this as ‘transmission bias’ and offers a
number of estimation techniques to address this issue (see Eberhardt and Helmers, 2010, for a recent survey).
None of these techniques were designed for long-T integrated panel data and they furthermore cannot address
the concerns of technology heterogeneity and cross-section dependence at the heart of this paper.

8In terms of empirical implementation the Pesaran (2006) CCE estimators were already shown to be robust to
both types of data dependencies (Pesaran and Tosetti, 2011; Chudik et al., 2011).



again differ in their assumptions about common factors. The performance of all of these es-
timators in nonstationary panels with cross-section dependence has been discussed in great
detail elsewhere (Coakley, Fuertes and Smith, 2006), so that we focus on the Pesaran (2006)
CCE estimators implemented and extended in the present analysis.

Econometric theory and simulation studies (Pesaran, 2006; Coakley et al., 2006; Kapetanios
et al., 2011; Westerlund and Urbain, 2011) indicate that the newly-developed CCE estimators
are able to accommodate the type of endogeneity we introduced in the empirical equation
to arrive at consistent estimates for common p coefficients or the means of heterogeneous
Bi. This result is robust even when the cross-section dimension N is small, when variables
are nonstationary, cointegrated or not, subject to structural breaks and/or in the presence
of ‘weak’ unobserved common factors (spatial spillovers) and global/local business cycles
(Chudik et al., 2011; Kapetanios et al., 2011; Pesaran and Tosetti, 2011).

The CCE estimators account for the presence of unobserved common factors with hetero-
geneous factor loadings by introducing cross-section averages for the dependent and inde-
pendent variables into the regression model, each with a country-specific parameter. Pesaran
(2006) shows that the asymptotic consistency of the estimators is based on any weighted
cross-section aggregates provided the weights w; satisfy the conditions

1 N N
w=0(y) LoA#0 Llul<k @

where K is some finite positive constant (Coakley et al., 2006). In the standard CCE estimator
the weights are the same for all countries (1/N). The economic interpretation could be that
the unobserved factors which influence productivity are common to all countries. In a simple
empirical extension we experiment with a number of weight-matrices prior to taking the
cross-section average to implement alternative scenarios:

(i) The ‘Neighbourhood Effect’: many empirical studies have argued that the performance of
neighbours to country 7 has a significant effect on the latter’s TFP, and tried to measure
this spillover empirically using spatial econometric methods (e.g. Ertur and Koch, 2007).
In our implementation we construct cross-section averages of y and x for country i from
the values of i’s contiguous neighbours.

(ii) The ‘Gravity Effect”: gravity models suggest that geographical distance is a powerful
determinant of the magnitude of economic exchange between countries (e.g. Frankel
and Romer, 1999). We adopt this approach to see whether distance between countries (a
proxy for climatic, soil, cultural and socio-economic differences) can explain the effects
of unobserved heterogeneity. For country i the observations for countries j =1,..., N —
1 are weighted by the inverse of the population-weighted distance between i and j before
computing the cross-section aggregates.9

(iii) The "Agro-Climatic Distance Effect’: much of the existing literature highlights the differ-
ential agro-climatic characteristics across countries and links the failure of technology
transfer to heterogeneity in climate and resource endowment. For country i we weight
the observations for countries j = 1,...,N — 1 by a measure for agricultural distance
between countries i and j before computing the cross-section aggregate.!

Following convention in the spatial econometric literature we set the diagonals on the contiguity and distance
matrices to zero. For all three weight matrices we ‘row-normalise’ the weights (across i).

10The distance measure is computed for every country-pair using data on the share of cultivated land within
each of twelve climatic zones (following Jaffe, 1986). This can be interpreted as a multi-variate correlation coeffi-
cient which varies between zero and unity: a low (high) value indicates little (high) similarity in the distribution of
cultivated land across climatic zones in the two countries (Pardey, James, Alston, Wood, Koo, Binenbaum, Hurley



Our conceptual justification for these variants of the CCE estimators is the situation where
the average of factor loadings across countries is non-zero, but systematic patterns are present
in the data. In the distance case we implicitly test the hypothesis that country i is driven by
unobserved common factors which are the same in countries in close proximity, but is much
less affected by other factors which drive countries further away. The neighbourhood case
represents an extreme extension of the same argument. In the final case we test the hypothesis
that countries with similar agro-climatic environment (e.g. tropics) are affected by a shared set
of common factors, but that they are not (or much less) affected by a separate set of common
factors which in turn influence countries in a very different agro-climatic environment (e.g.
temperate zone).

While we are able to address endogeneity arising from common factors, the results need
to be tested for reverse causality. In the case of the production function the empirical results
could represent a labour demand equation or investment equation in disguise. In order to
rule out this possibility we carry out tests for the direction of causation in Section V below.

All empirical implementation is subject to explicit or implicit assumptions which can
be reflected in the presence or absence of ‘well-behaved” residuals, displaying stationarity,
cross-section independence, and lack of autocorrelation. Although the applied macro panel
literature is strangely devoid of residual diagnostics (Banerjee, Eberhardt and Reade, 2010) we
base our decision on which model emerges as the preferred specification on this approach.!!

Data

The principal data source for our empirical analysis is the Food and Agriculture Organisa-
tion’s FAOSTAT panel database (FAO, 2007), from which we obtain annual observations for
agricultural net output, economically active labour force in agriculture, number of tractors
used in agriculture, arable and permanent crop land, and fertilizer use in 128 countries from
1961 to 2002 (average T = 40.3 observations).

Additional time-invariant data on geographical distance between countries and contigu-
ity is taken from CEPII (2006), and data on the share of agricultural land by climatic zone
from Matthews (1983), available in Gallup, Mellinger and Sachs (1999). Data construction is
discussed in the Appendix, which also contains descriptive statistics.

IV Empirical Results

Time-Series Properties and Cross-Section Dependence

We carry out a set of stationarity and nonstationarity tests for individual country time-series
as well as first (Maddala and Wu, 1999) and second generation (Pesaran, 2007; Pesaran, Smith
and Yamagata, 2009) panel unit root tests, results for which are reported in a Technical Ap-
pendix. Ultimately, in case of the present data dimensions and characteristics, and given all
the problems and caveats of individual country and panel unit root tests, we can suggest most

and Glewwe, 2007). Details and an illustration can be found in a Technical Appendix.

A number of alternative nonstationary panel estimators for the case of stationary factors are available in
the literature (Pedroni, 2000), however given our emphasis on cross-section dependence and the nonstationary
evolution of TFP we do not consider them here. We also do not adopt any methods where unobserved factors
and the production function are estimated jointly (e.g. Bai, Kao and Ng, 2009) since these rely on identifying the
right number of ‘relevant’ factors and have been argued to be unable to capture cross-section dependence of the
‘weak’ type (Chudik et al., 2011). Recent theoretical work furthermore concluded that ‘in practice one is unlikely
to do better than when using the relatively simple CA [CCE] approach’ (Westerlund and Urbain, 2011).



conservatively that nonstationarity cannot be ruled out in this dataset. Below we indicate resid-
ual stationarity for each empirical model, analysed using Pesaran (2007), which we interpret
as informal tests for cointegration (Banerjee and Carrion-i-Silvestre, 2011).12

The results for the cross-section dependence (CSD) analysis are again presented in a Tech-
nical Appendix. These provide strong evidence for the presence of cross-section correlation
within the sample, based on average variable cross-country correlation coefficients, princi-
pal component analysis and the Pesaran (2004) CD test. Formal CD test results and mean
absolute correlation coefficients for model residuals are reported below.

Pooled estimation results

We present the estimation results for the pooled specifications in Table 1. In a lower panel
of the table we report the implied returns to scale and labour coefficients as well as residual
diagnostics. For models where CRS cannot be rejected we also estimate a restricted version of
the model (in columns marked [b]). Recall for the following discussion that the 2FE estimator
represents the empirical implementation of choice in the applied literature.

We first discuss parameter coefficients: in common with many studies using the FAO
data, the coefficients on capital (tractors) are relatively low across all models, ranging from
.056 (agro-climate CCEP) to .13 (POLS). The land coefficients are high and relatively stable
across specifications (.24 to .36), whereas the fertilizer coefficients range from .025 to .17.
Livestock again has a rather large coefficient across all specifications (.22 to .42). Regarding
the implied labour coefficients, we find very low magnitudes across all specifications, with
the standard CCEP even providing nonsensical negative values. The most striking pattern
in these results is the magnitude of the implied decreasing returns to scale: based on this
analysis we can conclude that in a pooled specification the data in all but two of the alternative
CCEP estimators rejects constant returns emphatically, with input elasticities in the commonly
favoured 2FE estimator adding up to around .8. This finding may reflect a global production
function with substantial decreasing returns to scale; alternatively, it may reflect empirical
misspecification.

Turning to the diagnostics, unit root tests indicate that the CCEP estimators yield station-
ary residuals, in contrast to the standard panel estimators in levels (POLS, 2FE) for which
nonstationary residuals cannot be rejected. In the presence of nonstationary errors t-statistics
are invalid (Kao, 1999) and tend to vastly overstate the precision of the parameter estimates
(Bond and Eberhardt, 2009). Mean absolute residual correlations for POLS and 2FE are rel-
atively high, at around .4, whereas this measure drops to around .16 in all other regression
models. The formal CD tests for cross-section dependence yield very mixed results: only
the residuals for the distance and agro-climate CCEP versions suggest cross-section indepen-
dence. Further specification tests emphatically reject residual normality, serial independence
and homoskedasticity in all models (results not reported). These diagnostics indicate that the
commonly preferred 2FE estimator has serially correlated errors, which are nonstationary,
non-normal, heteroskedastic and correlated across countries. Note that input parameter esti-
mates for this estimator are reasonably close to those in Craig et al. (1997), the closest match
for this dataset and specification.

If constant returns are imposed in all models (not reported), the estimates for land per
worker rise dramatically with diagnostics virtually unchanged. The erroneous imposition of
CRS leads to larger magnitudes for either the land or the implied labour coefficient albeit with

12Formal cointegration analysis is discussed in Section V. Further residual diagnostics are available on request.
BThe dependent variable and the independent variables are expressed in per worker terms, such that the
addition of the labour variable indicates deviation from constant returns to scale.



Table 1: Pooled regressions

(1] (2] 3] (4] [5] [6]

POLS 2FE CCEP CCEP CCEP CCEP
weight matrix? none neighbour distance agro-climate
[a] [b] [a] [b]

labour -0.059 -0.191 -0.319 -0.015 - -0.265 -0.195 -

[17.50]**  [14.79]**  [2.35]** [0.10] [2.13]* [1.72]
tractors pw 0.131 0.058 0.074 0.089 0.090 0.061 0.056 0.083

[24.12]*  [13.76]"*  [4.86]"*  [437]**  [4.69]*  [4.69]*  [3.61]**  [5.40]**
livestock pw 0.219 0.358 0.360 0.313 0.317 0.357 0.386 0.421

[28.61]**  [30.85]"*  [7.00]**  [4.16]**  [4.01]**  [632]**  [8.10]**  [9.23]**
fertilizer pw 0.169 0.073 0.025 0.049 0.049 0.029 0.027 0.032

[28.08]**  [23.63]**  [4.67]** [4.98]** [4.88]** [4.34]** [4.41]* [5.58]**
land pw 0.253 0.294 0.241 0.316 0.321 0.239 0.301 0.364

[30.42]**  [21.07]** [2.34] [3.56]** [4.39]** [2.81]** [3.07]** [4.73]**
Implied B 0.169 0.027 -0.020 0.217 0.222 0.050 0.035 0.100
Returns’ DRS DRS DRS CRS - DRS CRS -
RMSE 0.435 0.148 0.075 0.091 0.091 0.076 0.079 0.082
Stationarity t I(1) 1(1) 1(0) 1(0) 1(0) 1(0) 1(0) 1(0)
Mean |[p;;| 0.42 0.41 0.18 0.15 0.16 0.16 0.16 0.17
CD (p) -249 (.01) 9.64 (.00) 4.97(.00) 5.07(00) 5.02(00) 158(11) 0.58(.56) -1.31(.19)

Notes: Dependent variable: [1] & [3]-[6] log output per worker, [2] dto. in 2FE transformation as described in
Coakley et al. (2006). We include (T — 1) year dummies in equation [1]. Independent variables: all variables
are in log per worker terms with the exception of log labour. Constant term included but not reported. In
models [4] and [6] where unrestricted models in column [a] indicate constant returns we report the restricted
models (CRS imposed) in column [b]. Sample: n = 5,162 observations, N = 128 countries. The values in square
brackets are absolute t-statistics, based on heteroskedasticity-robust standard errors. * and ** indicate statistical
significance at the 5% and 1% level respectively. § We apply different N x N weight matrices to construct the
cross-section averages as described in the main text. b The implied returns to scale are labeled decreasing (DRS)
if the coefficient on labour is negative significant, and constant (CRS) if this coefficient is insignificant. The
implied labour coefficient is computed by adding up all the coefficients on the RHS variables (except for labour),
subtracting them from unity and then adding the coefficient on labour (the result is the implied labour coefficient
if constant returns were to hold). RMSE reports the root mean squared error.

Residual Diagnostics: T Pesaran (2007) CIPS test results: 1(0) — stationary, I(1) — nonstationary. Full results
available on request. 1 Mean Absolute Correlation Coefficient & Pesaran (2004) CD test, Hy: no CSD.

diagnostics that reject constant returns as well as the most common regression assumptions
for this estimator (stationary, serially uncorrelated, normal and homoskedastic residuals).

Regarding the Pesaran (2006) CCEP and our extensions, our results in Table 1 show that
the former emphatically rejects CRS and yields summed input elasticities of around .68, with
a negative implied labour coefficient; of the other CCE estimators the distance version behaves
in a similar fashion, whereas the other two cannot reject CRS. Only the distance and agro-
climatic CCEP variants cannot reject cross-section independence in the residuals.'*

In conclusion, our pooled models largely reject constant returns to scale, yield very low
values for the implied coefficient on labour and over a range of specification tests indicate a
combination of non-normality and heteroskedasticity, cross-section dependence, nonstation-
arity and/or serial correlation in the residuals. Allowing for heterogeneity in the unobserved
common factors (as in the CCEP), although alleviating a potential identification problem,
does not seem to provide an overall panacea. Our next analytical step is therefore to allow
for full technology heterogeneity across countries.

140One may speculate that the other CCEP models fail to account for all cross-section dependence in the data
since sets of unobservables differ across country groups (as developed above).
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Averaged country regression estimates

We present the results from Mean Group-type estimators in Table 2; for all estimators we
present the robust coefficient mean across N country parameters.!> Following Pesaran and
Smith (1995) the t-ratios reported for each average estimate test whether the average param-
eter is statistically different from zero.

The MG model displays large decreasing returns. The standard, neighbour and agro-
climate CCEMG in contrast have insignificant coefficients on labour, indicating constant re-
turns in the average country regression. Around 25 to 35 countries reject CRS at the 5% level
of significance in each of these models. The distance CCEMG indicates very large and highly
significant decreasing returns to scale.

Table 2: Mean Group type estimators

(1] (2] (3] [4] 5]

MG CCEMG CCEMG CCEMG CCEMG
weight matrix? none neighbour distance agro-climate
[a] [b] [a] [b] [a] [b]

labour -0.357 -0.126 - -0.193 - -0.311 -0.039 -

[2.23]* [1.04] [1.67] [2.62]** [0.36]
tractors pw 0.075 0.064 0.109 0.051 0.096 0.078 0.058 0.086

[3.31]** [3.26]** [5.13]** [2.14]* [4.17]** [3.60]** [2.45]* [3.82]**
livestock pw 0.246 0.324 0.321 0.306 0.321 0.278 0.292 0.339

[8.07]** [9.44]** [9.471** [7.22]** [8.22]** [7.24]** [7.51]** [9.97]**
fertilizer pw 0.030 0.031 0.036 0.026 0.035 0.029 0.029 0.035

[4.86]** [5.02]** [5.63]** [4.51]** [5.19]** [5.11]** [4.77]** [5.63]**
land pw 0.210 0.200 0.201 0.111 0.237 0.081 0.214 0.190

[2.79]** [2.68]** [3.57]** [1.41] [4.14]** [1.14] [3.35]** [3.63]**
implied B, 0.082 0.256 0.333 0.312 0.311 0.223 0.223 0.353
Returns DRS CRS - CRS - DRS CRS -
# reject CRS 48 26 - 36 - 35 32 -
RMSE 0.066 0.055 0.059 0.054 0.060 0.053 0.056 0.060
Stationarity t 1(0) 1(0) 1(0) 1(0) 1(0) 1(0) 1(0) 1(0)
Mean \pi]-| i 0.15 0.15 0.15 0.14 0.14 0.14 0.14 0.14

CD statistic (p)  9.16 (00) 021 (:84) -0.23 (.82) 2.04 (.04) 2.02 (04) -049(62) -0.11(92) -1.01(.31)

Notes: n = 5,162, N=128. We present robust sample means for all model parameters. Terms in brackets are
absolute t-statistics (Hp: (1/N) Y; B; = 0) following Pesaran and Smith (1995). We report the number of countries
rejecting CRS. For all other details see Table 1.

Regarding average parameter estimates on the factor inputs, the MG estimator yields
coefficients for capital around .08, for livestock around .25, for fertilizer around .03 and for
land around .20. In comparison to the parameter differences across models in the pooled
specifications, these estimates are relatively similar to those in the CCEMG models, with the
crucial exception of the returns to scale coefficient and thus the implied labour elasticity: for
the MG this is .08, whereas in the latter group it is around .30.1® Within the CCEMG group

15This procedure employs weights based on the absolute residuals to reduce the impact of outliers on the mean
estimate Hamilton (1992). Median estimates (not reported) are very close to the robust means presented.

16There are two ways of reporting the variation in the implied labour parameter to illustrate heterogeneity:
firstly, we can report the 95% confidence interval of the coefficient computed from the robust means reported
here, which yields the interval [.23, .48]. Second, we can compute the implied labour coefficient in each country
and create a robust mean (.24), which yields the 95% confidence interval [.13, .36]. Note that country-specific
parameter coefficients should not be viewed in isolation (Pedroni, 2007, p.440), frequently yielding economically
implausible magnitudes (Boyd and Smith, 2002), as is illustrated by the extreme values of the distribution in
the present case, -2.30 and 3.05. In Eberhardt and Teal (forthcoming) we provide a formal explanation for the

11



the standard and the agro-climate estimators yield very similar results, in particular for the
restricted models.!” For these livestock has a larger coefficient than in the MG benchmark.

Turning to the diagnostics, all models reject nonstationary residuals in the Pesaran (2007)
CIPS tests. Mean absolute error correlation is uniformly low at .15, but cross-section indepen-
dence is rejected in the MG as well as in the neighbour CCEMG estimator. Taking the results
for other diagnostic tests into account,'® we suggest that evidence in favour of the standard
CCEMG and agro-climate CCEMG seems most convincing: compared to the other models
these provide some evidence of serially uncorrelated and normal residuals.

Summary of the findings

In conclusion to our production function estimations we find that the pooled models favoured
by the existing applied literature result in regression residuals which seriously question
the validity of the empirical estimates, while heterogeneous parameter models yield more
favourable diagnostic results, in particular for the standard and agro-climate CCEMG (CRS).
In order to emphasise the stark differences in the coefficient estimates between the 2FE and
our preferred CCEMG estimates as well as the ‘importance” attached to the respective input a
direct comparison reveals that (i) the magnitude of the tractor coefficient next to doubles, (ii)
that of the fertilizer coefficient halves, (iii) that of the land coefficient drops by a third, while
(iv) the (implied) labour coefficient increases eight-fold when moving from a 2FE-based to an
agro-climate CCEMG-based analysis — these numbers speak for themselves in justifying the
more flexible approach taken in the present analysis.?

V Cointegration and the Direction of Causation

A central focal point of the cross-country growth literature over the past decades has been
the concern over variable endogeneity, to the extent that a credible instrumentation strategy
represents the dominant criterion for the validity of empirical results. In the present analysis
we have emphasised one type of endogeneity, whereby common factors drive inputs as well
as output, leading to identification issues unless these factors are accounted for. In addition
we need to be concerned about a type of endogeneity which more fundamentally implies
‘reverse causality’. In a simplified version of equations (1) and (2) we can express this as

Vie = PBixi+up U = o; + Aifr + €t )

Xit T + 6igt + pift + Pigir + Vi (6)

for a single covariate x and single factor f contained in both the y- and x-equations. Due to
the presence of ¥;¢;; in the second equation we should be concerned over whether vy ‘causes’
x or the reverse being the case or both. In the case of a production function we may be

occurrence of these implausible country estimates alongside the much more sensible average values.

I71f CRS is imposed in all models it can be seen that this restriction does not create the same dramatic changes
to the land estimates as in the pooled estimator case.

18The cross-section correlation test suggested by Bai (2009) yields similar results across estimators (not re-
ported). A number of additional residual tests (results not reported) based on the combination of time-series tests
yield favourable diagnostics for the CCEMG models.

1950 as to assure the robustness of the results discussed above we carried out a number of additional regressions
and tests, all of which are available on request or contained in a Technical Appendix: dynamic versions of the
above empirical models vindicate the results discussed; parameter constancy over time is suggested to be a valid
assumption; correlation coefficients between the means of the variable series and the heterogeneous parameter
estimates indicate limited correlation in the preferred CCEMG models, which implies that there is no systematic
difference in the technology estimates associated with the levels of inputs or output.
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concerned that our estimation equation is a labour demand equation or investment equation
in disguise. The standard approach has therefore been to instrument for x using one or a
set of variables z which satisfy the conditions of informativeness (E[zx] # 0) and validity
(E|[ze] = 0). Many researchers have expressed doubt whether it is possible to obtain credible
instruments in the macro data context (e.g. Durlauf et al., 2005; Clemens and Bazzi, 2009) and
it is furthermore well-established amongst econometricians that instrumentation in a pooled
model is impossible if the underlying relationship is heterogeneous across countries (Pesaran
and Smith, 1995).

Having adopted a panel time series approach the issues of endogeneity and direction of
causation can here take an alternative pathway: given that our variables are nonstationary,
we first need to show that they are cointegrated; in a second step we can then apply a test for
direction of causation to provide evidence that our above results can indeed be interpreted
as empirical production functions. Cointegration tests are commonly carried out as a pre-
estimation testing procedure, however we have delayed these until after estimation since we
hypothesise that unobservables (TFP) form part of the cointegrating vector (Banerjee and
Carrion-i-Silvestre, 2011).

We carry out panel cointegration tests based on the error correction model representation,
following Gengenbach, Urbain and Westerlund (2009). Continuing with the simple model in
(5) and (6) we estimate the following equation for each country i

pi pi pi
Ayir = aiyip—1 + YiXie—1 + Voifir 1+ Y TisBYip—s + Y ToisDxip s + Y A+ i (7)
s=1 s=0 s=0
In order to capture the common factors f we use the cross-section averages of all variables in
the model, including lagged Ay;; and Ax;;, depending on the lag-length p;. We run this test
for each CCEMG model with different deterministics (none, intercept, intercept and trend).
In each case the test statistic T* is a simple average of the f-ratios for &; from the country
regressions. Since the individual t-ratios as well as their averages have non-standard distri-
butions under the null we provide a number of critical values.

Table 3: Gengenbach, Urbain & Westerlund (2009) cointegration tests

T Standard Neighbour Distance Agro-Clim 10% 5% 1%

Model 1 -3.653***  -3.446*** -3.631%**  -3.681"** -3.152  -3.204 -3.297
Model 2 -3.697***  -3.752%** -3.633***  -3.957%** -3.459 -3.507 -3.584
Model 3  -3.765* -3.885%** -3.631 -3.879** -3.749 -3.793 -3.881

Notes: The T* statistics are averages of the N t-ratios from the country ECM regressions, where extreme f-ratios
have been replaced by bounds (truncated; we used ¢ = .000001) following the strategy devised in Gengenbach
et al. (2009). This paper also provides simulated critical values we present in the right-most 3 columns (we
pick N = 100 as this is the largest dimension for which critical values were reported — our judgment is thus
more conservative). Model 1-3 refers to the ECM specification without deterministics, with an intercept and with
intercept and trend, respectively. Hy: no error correction, i.e. no cointegration. Lag-length p; determined using
Bayesian/Schwarz IC; empirical specification: static model, CRS imposed.

As can be seen in Table 3 in most cases the ECM equations reject the null of ‘no error
correction” at the 1% level (thus implying cointegration).?

We now turn to the issue of causality, where we follow the example and discussion in
Canning and Pedroni (2008, Section 4). Provided there exists a cointegrating relationship

20We further carried out a set of panel cointegration tests following Pedroni (1999, 2004) where an estimate
of country-specific TFP is included in the cointegrating vector. Results (available on request) support the above
finding of heterogeneous cointegration.
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between variables the Granger Representation Theorem (Engle and Granger, 1987) states that
these series can be represented in the form of a dynamic Error Correction Model (ECM).
Generically, for a pair of cointegrated variables x and y we can write

K K

Ayir = it Mii—1+ Y P1ijAyie—j+ Y P12iAxi e + €1t (8)
=1 =1
K K

Axyp = o+ Aoibiy—1 4 Y YoijAYis—j + Y o0 Axi—j + €2y )
=1 =1

where ¢é;;_1 represents the ‘disequilibrium term’” ¢ = y — ,Bix — d constructed using the es-
timated cointegrating relationship between these two variables (d represents deterministic
terms). Equations (8) and (9) further include lagged differences of the variables in the cointe-
grating relationship. In the above example there are only two equations, since we have two
variables in the cointegrating relationship. The Granger Representation Theorem implies that
for a long-run equilibrium relationship to exist between y and x at least one of Ay; and Ay;
must be non-zero: if (and only if) A;; # 0 then x has a causal impact on y (our notation:
x — y), if (and only if) Ay; # 0 then the causal impact is reversed (y — x). If both A; and Ay;
are non-zero they determine each other jointly.

We carried out the above regressions for the pooled 2FE and heterogeneous MG and
CCEMG specifications, where in each case the disequilibrium term é represents the model
residuals of static regression(s) with CRS imposed. In keeping with the Pesaran (2006, 2007)
approach in case of the CCEMG estimators we include cross-section averages of all variables
in the ECM (including lags) to the regression — note again that this implies TFP is part of the
cointegrating relationship.?!

The ECM regressions are estimated at the country-level and empirical estimates for A;
are investigated using standard t-ratios, given that all variables in the ECM regression are
stationary — this property is confirmed for é in the CCE regressions but rejected for 2FE
(not presented). We present the results of this analysis in Table 4: in the row for the ‘output
equation” we report the results for a test whether the set of inputs (and in the CCEMG models:
TFP) have a causal impact on output, with the null hypothesis of no causal impact” and
in analogy for the other variables in the subsequent rows. We report the averaged t-ratio
(GM= Ny ty,) and its probability value, as well as a Fisher-type statistic (constructed
from the p-values of the t-ratios in each ECM regression) and its probability value. In either
case the null hypothesis is that A; = 0. It is important to note that the interpretation of the
GM and Fisher statistics differ in the case where the A coefficients differ across countries:
the former is a two-sided tests and can take on positive or negative values under the non-
zero alternative hypothesis; the latter in contrast is a one-sided test and only takes positive
values. The difference is therefore one between A; being on average zero compared with being
pervasively zero (Cannmg and Pedroni, 2008). If the two tests disagree we learn about the
heterogeneity of A; across countries. We also report the robust mean parameter for A;. The
final column summarises our analysis to reach a verdict on direction of causation.

We first investigate the 2FE results: the difference between the Fisher and GM test results
suggests that there do exist long-run causal relations between these variables and that they
differ across countries. However, we have to conclude that all variables are endogeneously

2IDue to the limited time-series dimension of our data we present results with one and two lags (K = 2,
implying 24 covariates), which reduces the sample to N = 122 countries. We carried out all of the tests with
K = 3 (implying 34 covariates), which reduces the sample to N = 103 countries, and found similar patterns of
rejection and non-rejection across estimators and ECM equations.
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determined, such that the empirical equation cannot be interpreted as a production function.
The averaged A; parameters confirm this interpretation. An alternative view is that the em-
pirical misspecification has led to nonstationary residuals, such that there is noncointegration
between the variables in this model.

Table 4: Canning & Pedroni (2008) tests for direction of causation

2FE GM (p)  Fisher (p) mean A;  t-stats Verdict

output equation -0.97  0.00 4852  0.00 -0.142 -7.91 X =y
tractor equation 018 0.17 456.2  0.00 0.024 1.81 X_tr, Yy — Xty
livestock equation 0.38 0.00 351.0 0.00 0.043 3.77 X_liver Y = Xiige
fertilizer equation 0.10 0.42 432.3  0.00 0.141 1.82 X_f Yy = X
land equation 0.37 0.00 3952 0.00 0.011 191 Xn, Y —  Xp
MG GM (p)  Fisher (p) mean A;  t-stats Verdict

output equation 293 000 16121 0.00 -0.976  -24.00 X =y
tractor equation -0.16 0.87 274.7 020 -0.029 -0.98 X_tr, Y X
livestock equation 0.03 0.98 307.6 0.01 0.015 0.55 X_liver Y = Xlige
fertilizer equation -0.06  0.96 2572 0.47 -0.116 -0.85 X_f Yy  H Xy
land equation -0.06 0.95 286.5 0.09 -0.004 -0.33 X_n, Y —  Xp
CCEMG GM (p)  Fisher (p) mean A;  t-stats Verdict

output equation -2.09  0.04 9384 0.00 -0.925  -18.63 x, TFP  — 'y
tractor equation -0.08 0.94 189.3 1.00 -0.045 -1.28 X_¢r, Yy, TFP = xp
livestock equation 012 091 331.1  0.00 0.011 027  X_jive, ¥, TFP = Xjjpe
fertilizer equation -0.04 097 232.7  0.69 0.023 0.14 x5y, TFP »  x¢
land equation 0.06 0.95 225.7  0.79 0.010 0.68 X_n, Y, TFP =+ x4
CCEMG neighbour GM  (p) Fisher (p) mean A;  t-stats Verdict

output equation -1.88  0.06 856.0 0.00 -0.784  -16.09 x, TFP  — 'y
tractor equation 0.03 097 2604 0.22 0.032 0.79 X_tr, Y, TFP =+ xp
livestock equation 0.07 0.94 305.7 0.00 0.004 011 X_jive, ¥, TFP = Xjige
fertilizer equation 0.16 0.87 299.1 0.01 0.179 1.02 x gy TFP = xf
land equation 0.07 0.95 312.3  0.00 0.002 0.11 X—n, ¥y, TFP  — x4
CCEMG distance GM (p)  Fisher (p) mean A;  t-stats Verdict

output equation -2.04 0.04 9324 0.00 -0.997  -21.42 x, TFP — 'y
tractor equation -0.12 0.90 243.8 0.49 -0.041 -1.10 X—tr, Yy, TFP = x4
livestock equation 0.10 0.92 3019 0.01 0.050 121 X_jipe, ¥, TFP = Xpjpe
fertilizer equation -0.02 098 2575 0.26 -0.059 -0.31 X_f, Y, TFP —» «x f
land equation -0.12 091 2442 0.48 -0.001 -0.06 X_n, ¥y, TFP  —  xy
CCEMG agro-climate = GM (p)  Fisher (p) mean A;  t-stats Verdict

output equation -225 0.02 10355 0.00 -0.935 -20.16 x, TFP — 'y
tractor equation -0.02 098 241.8 0.53 -0.013 -0.42 X_¢r, Yy, TFP = xy
livestock equation 0.15 0.88 380.0 0.00 0.048 123 X_jiye, ¥, TFP = Xpjpe
fertilizer equation 0.07 094 2425 0.52 -0.004 -0.02 X_f, Y, TFP —-» «x f
land equation -0.09 0.93 2273  0.77 -0.001 -0.08 X_un,y, TFP = x4

Notes: We report various test statistics for the null of no long-run causal impact between sets of different variables.
In each case ‘variable equation’ refers to the ECM regression with ‘variable” on the LHS. GM gives the group-mean
average of country-specific t-ratios for the coefficient on the disequilibrium term (A;) which is distributed N (0, 1).
Fisher gives —2);logm; where 7; is the probability value of the country-specific t-ratio on the disequilibrium
term. The Fisher statistic is distributed x*(2N). The final two columns but one report the mean estimate for A,
and the associated t-ratio. In the ‘Verdict’ column we summarise the analysis, using x_, for ‘all inputs other than
tractors” etc. and — as short-hand for ‘does cause” and — for ‘does not cause’. TFP is included implicitly via
cross-section averages (see main text). Models: static with CRS imposed.

Turning to the MG results, it can be seen that the GM and Fisher statistics agree that
there is a causal relationship from the inputs to output. However, the remaining ECM results
suggest that there are heterogeneous causal relationships in the land and livestock equations,
meaning that the production function may not be the only relationship represented by our
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empirical results. The four CCEMG results have two characteristic features: firstly, we find
strong evidence for a causal relationship from inputs and implied TFP to output in all four
models based on GM and Fisher statistics as well as mean A;. Secondly, in the standard,
distance and agro-climate CCEMG results we cannot reject the null of no long-run causal
relationship in the other ECM equations (tractor, fertilizer, land), with the exception of the
livestock equation, whereas this not the case for the neighbour CCEMG results (livestock,
fertilizer and land reject). The evidence for uni-directional causation from inputs to output
is thus somewhat mixed for these heterogeneous parameter models. Having said that, the
share of countries which reject the absence of a long-run, causal relationship for the output
equations is uniformly high in all these models (not reported). For the other equations less
than 15% of countries (less than 20% in the neighbour, less than 7% in the agro-climate case)
reject the null of no long-run causal relationship.

The overarching concern of this analysis was to show that our empirical results can be
reasonably assumed to represent a causal relationship from inputs to output, and not vice
versa. Our results suggest that we can be comfortable with this interpretation in the standard,
distance and agro-climatic CCEMG models, and to a lesser extent in the neighbourhood
CCEMG and MG models. The misspecified 2FE model was shown to fail this test entirely.

VI Conclusions

In this paper we investigated the determinants of agricultural productivity in a large panel
of developing and developed countries, allowing for technology heterogeneity, variable non-
stationarity, cross-section dependence and flexibility in the returns to scale. A review of the
literature indicated that empirical implementation in existing studies is dominated by the
pooled OLS (POLS) and two-way fixed effects (2FE) models, with constant returns to scale
often imposed without formal testing. Our results display considerable differences in the
estimated parameters when moving from pooled models to averaged country regressions,
and between equations ignoring and accounting for cross-section dependence, and we use
diagnostic testing to determine favourable specification(s) and estimator(s). We draw four
conclusions from our analysis:

Firstly, parameter heterogeneity plays a crucial role in cross-country productivity investi-
gation for agriculture. The use of pooled models is largely rejected by the diagnostic tests we
apply. These tests further indicate that the preferred pooled estimator applied in the literature
(2FE) is seriously misspecified. The implications for the interpretation of technology param-
eter and by extension any TFP estimates derived from these are shown to be very serious in
our sample for the agricultural sector. Beyond the application to agricultural production, it
is important to reiterate that if technology is heterogeneous across countries then none of the
standard instrumentation strategies applied in the cross-country empirical literature (instru-
mentation using z variables or lags) are valid (Pesaran and Smith, 1995), since the empirical
specifications in these cases assume technology homogeneity (e.g. Acemoglu, Johnson and
Robinson, 2001; Miguel, Satyanath and Sergenti, 2004; Rajan and Subramanian, 2008).

Secondly, even once technology heterogeneity with regards to observable inputs is ac-
counted for, our results show that the presence of time-varying unobserved heterogeneity
matters for empirical modelling. We employed the common factor structure to model vari-
able endogeneity and tested all models for reverse causality. In contrast, standard instru-
mentation strategies in cross-country empirical analysis assume that variable series are cross-
sectionally independent and do not allow for the heterogeneous impact of global shocks such
as the recent financial crisis across countries. The importance of observed and unobserved
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heterogeneity in macro panel empirics has long been recognised in the econometric theory
literature, however few applied studies have followed the call toward an integrated treatment
of the production technology in its entirety, including heterogeneity and its source (Durlauf,
Kourtellos and Minkin, 2001). We feel this opens up interesting avenues of enquiry away
from the hankering after natural experiments and the quest for instrumental variables which
have dominated the recent cross-country literature.

Thirdly, the imposition of constant returns to agricultural production on pooled regression
equations is rejected by the data and leads to qualitatively different empirical results. In
contrast, the imposition of CRS on individual country regressions does not change average
parameter coefficients considerably compared with the unrestricted results: thus the observed
decreasing returns at the global level evident in the pooled models is an artefact of empirical
misspecification.

Fourthly, our extension to the CCEMG estimator of applying (exogenous) weight matri-
ces before computing the cross-section averages and in effect imposing more structure on
the nature of cross-section correlation in the data has provided further interesting insights.
Based on our results we suggest that the common correlated effects driving the cross-section
dependence in agricultural production are closely proxied by our measure for agro-climatic
distance. The implication of our findings is that agricultural TFP is affected by different fac-
tors and has different levels of responsiveness across geographical regions of the world due
to agro-climatic diversity. Furthermore, technology transfer between countries is limited by
whether technology can be adapted to the local environment — both of these statements are
widely accepted in the literature but prior to this study were ignored in empirical analyses of
cross-country productivity. They merit further investigation which we are currently pursuing.
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Appendix: Data, descriptives and synthetic literature review

The principal data source for our empirical analysis is the Food and Agriculture Organisa-
tion’s FAOSTAT database (FAO, 2007), from which we obtain annual observations for agricul-
tural net output, economically active labour force in agriculture, number of tractors used in
agriculture, arable and permanent crop land and fertilizer use in 128 countries from 1961 to
2002. The total number of observations is 5,162 with an average T of 40.3. Real agricultural net
output (in thousand International $) is based on all crops and livestock products originating
in each country. Intermediate primary inputs of agricultural origin are deducted, including
fodder and seed. The quantities for each commodity are weighted by the respective 1999-
2001 average international commodity prices and then summed for each year by country. The
prices are in international dollars, derived using a Geary-Khamis formula for the agricultural
sector.? The labour variable represents the annual time series for total economically active
population in agriculture. For capital stock in agriculture we follow a common convention
and use total number of agricultural tractors in use as a proxy. The livestock variable is con-
structed from the data for asses (donkeys), buffalos, camels, cattle, chickens, ducks, horses,
mules, pigs, sheep & goats and turkeys. Following convention we use a conversion detailed
in Hayami and Ruttan (1970) to convert the numbers for individual animal species into the
livestock variable. The fertilizer variable represents agricultural fertilizer consumed in met-
ric tons, which includes ‘crude” and ‘manufactured’ fertilizers. The land variable represents
arable and permanent crop land (in 1000 hectare). Descriptive statistics are presented in Table
A-1. The countries in our sample are listed in a Technical Appendix.

Analysing agricultural production for a large number of countries inevitably raises con-
cerns over data reliability. In contrast to macro data provided in for instance the Penn World
Table (CIC, University of Pennsylvania) FAOSTAT does not offer a data quality grade for
each country, but instead labels each observation. Most output data used in our analysis
carries the note ‘[a]ggregates may include official, semi-official or estimates’. For inputs we
obtain more details, which suggest that tractor data is least reliable, with around 45% of ob-
servations estimated.® Thus data is far from perfect for cross-country comparison, although
estimating production functions country by country and accounting for unobserved common
factors should go some way to ward against systematic over-/underreporting of variable
magnitudes. We find that there is no statistically significant relationship between the share
of tractor data estimated and the coefficients on tractor, livestock, fertilizer or land in our
preferred agro-climatic CCEMG model, which could be viewed as evidence to that end.

Additional time-invariant data on geographical distance between countries and contigu-
ity (neighbourhood) is taken from CEPII (2006), and data on the share of agricultural land by
climatic zone from Matthews (1983), available in Gallup et al. (1999).

@Refer to the Technical Appendix to Restuccia et al. (2008), available on Restuccia’s website.
PWe report Penn World Table country quality grade and share of non-estimated tractor data in a Technical
Appendix.
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Table A-1: Descriptive statistics

Variables in untransformed level terms

Variable mean median std. dewv. min. max.
logs

output 14.24 14.24 1.71 8.07 19.57
labour 14.01 14.09 1.84 8.01 20.05
tractors 9.01 8.87 2.79 0.69 15.51
livestock 14.90 14.92 1.71 8.80 19.51
fertilizer 10.82 10.97 2.69 1.61 17.49
land 14.69 14.78 1.80 6.91 19.07
annual growth rate

output 2.3% 2.4% 8.8%  -83.0%  87.6%
labour 0.3% 0.8% 2.6%  -28.8%  28.8%
tractors 4.4% 2.0% 9.9% -121.8% 138.6%
livestock 1.4% 1.6% 6.4%  -93.3% 182.9%
fertilizer 5.6% 3.5% 40.1% -626.3% 393.2%
land 0.8% 0.1% 3.6% -41.8%  79.0%

Variables in per worker terms

Variable mean median std. dewv. min. max.
logs

output 0.23 -0.03 1.42 -2.22 4.00
tractors -5.00 -4.97 3.01 -13.67 0.68
livestock 0.89 0.81 1.38 -2.77 4.63
fertilizer -3.19 -2.87 2.67 -11.56 1.95
land 0.68 0.67 1.15 -2.20 4.95
annual growth rate

output 2.0% 2.0% 9.0% -80.3% 109.9%
tractors 4.1% 2.1% 10.1% -120.2% 136.5%
livestock 1.2% 1.2% 6.6%  -935% 182.9%
fertilizer 5.4% 4.2% 40.0% -627.8% 390.8%
land 0.50/0 0.00/0 4.10/0 -43.0(70 81.60/0

Notes: We report the descriptive statistics for output (in 1$1,000), labour (headcount), tractors (number), livestock
(cattle-equivalent numbers), fertilizer (in metric tonnes) and land (in hectare) for the full regression sample (n =
5,162; N = 128).
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