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Appendix A MCMC algorithm

In this appendix we detail the MCMC algorithm that is used to estimate the baseline and extended model

presented in the main paper. In Subsection A.1, we first outline the general structure of an interweaving

approach to boost sampling efficiency. Next, in Subsection A.2, we provide full details on the different

building blocks of our MCMC algorithm. In Subsection A.3 we perform a Monte Carlo simulation to

analyze small sample performance.

A.1 Interweaving approach

The stochastic model specification search proposed by Frühwirth-Schnatter and Wagner (2010) relies on

a non-centered parameterization (NCP) - as in equation (14) of the main paper - in which the parameters

φφφ and the time-varying states sss are sampled in different blocks. However, the trajectories of 20,000 draws

for the parameters ςα and ςθ, using the MCMC algorithm on simulated data, plotted in the left column

of Figure A.1, show that this parameterization leads to very slow convergence. This is confirmed by

the integrated autocorrelation time, which is 986 for ςα and 1,945 for ςθ. The integrated autocorrelation

time is calculated as τ = 1 + 2
∑d

t=1 ĉ(t) with ĉ(t) the estimated autocorrelation function at lag t and

d the lag for which ĉ(t) < 0.01. It can be interpreted as the factor by which the squared Monte Carlo

standard error increases due to the dependence in the Markov chain. The integrated autocorrelation time

equals one in the ideal situation of complete independence, while higher values imply a reduction in the

‘effective’ number of draws such that more MCMC iterations are needed to attain the same Monte Carlo

standard error.

Inspired by Yu and Meng (2011), we boost the sampling efficiency by interweaving the NCP with a cen-

tered parameterization (CP) of the model. The basic idea is to sample the parameters φφφ twice by going

back and forth between the two alternative parameterizations in each iteration of the MCMC algorithm.

Yu and Meng (2011) shows that by taking advantage of the contrasting features of the NCP and CP,

the interweaving strategy can outperform both in terms of sampling efficiency. Minimally, it leads to

an algorithm that is better than the worst of the two but often improvements are quite substantial. A

similar interweaving approach is used by Bitto and Frühwirth-Schnatter (2019) to achieve shrinkage in a

time-varying parameter model framework.
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In the remainder of this section, we show how an interweaving strategy can overcome sampling defi-

ciency in our setting. We first present the NCP and CP of the model together with their appropriate

MCMC structure. Next we outline the interweaving algorithm and show the sampling efficiency gain it

achieves compared to the NCP. We will focus on the following extended model (as presented in Section

4.1 of the main paper):

λit = α∗it + βjtxj,it +
K∑

k=1,k 6=j
(β∗kα + βjtβ

∗
kθ)xk,it + θ∗itλt + εit, εit ∼ N(0, σ2ε), (A.1)

α∗it = α∗it−1 + ψαit, ψαit ∼ N(0, ςα), (A.2)

θ∗it = θ∗it−1 + ψθit, ψθit ∼ N(0, ςθ), (A.3)

βjt = βjt−1 + ψβjt, ψβjt ∼ N(0, ςβ). (A.4)

The restricted version in equation (24) is obtained by setting βjt = βjα, β∗kθ = 0 and, β∗kα = βkα (∀k).

The baseline model presented in Section 2 is obtained by further setting βkα = 0 (∀k).

Centered parameterization (CP)

Equations (A.1)-(A.4) constitute the CP of the model. This parameterization is characterized by: (i) sam-

pling the centered states (α∗it, θ
∗
it, βjt) and β∗\jα = (β∗1α, . . . , β

∗
j−1,α, β

∗
j+1,α, . . . β

∗
Kα) using the Kalman

filter; (ii) sampling innovation variances (ςα, ςθ, ςβ) instead of standard deviations (
√
ςα,
√
ςθ,
√
ςβ) in a

second block; (iii) sampling β∗\jθ = (β∗1θ, . . . , β
∗
j−1,θ, β

∗
j+1,θ, . . . β

∗
Kθ) and σ2ε together with σ2ε in a third

block. The general outline of the Gibbs sampler is given by:

1. Draw α∗it, θ
∗
it, βjt and β∗\jα using the Kalman filter.

2. Draw ςα, ςθ and ςβ .

3. Draw β
∗\j
θ .

Non-Centered parameterization (NCP)

The NCP of the model in equations (A.1)-(A.3) is given by:

λit = α∗it + βjtxj,it +
K∑

k=1,k 6=j
(β∗kα + βjtβ

∗
kθ)xk,it + θ∗itλt + εit, εit ∼ N(0, σ2ε), (A.5)

α∗it = α∗i0 + δα
√
ςαα̃it, with α̃it = α̃it−1 + ψ̃αit, α̃i0 = 0, ψ̃αit ∼ N (0, 1) , (A.6)

θ∗it = θ∗i0 + δθ
√
ςθθ̃it, with θ̃it = θ̃it−1 + ψ̃θit, θ̃i0 = 0, ψ̃θit ∼ N (0, 1) , (A.7)

βjt = βj0 + δβ
√
ςββ̃jt, with β̃jt = β̃jt−1 + ψ̃βt , β̃j0 = 0, ψ̃βt ∼ N (0, 1) . (A.8)

The main features of this parameterization are that: (i) it includes only the relevant time-varying compo-

nents through sampling the indicators (δα, δθ, δβ); (ii) the initial conditions (α∗i0, θ
∗
i0, βj0) , the standard
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deviations (
√
ςα,
√
ςθ,
√
ςβ) of the innovations to the time-varying parameters and the parameters in β∗α

and β∗\jθ are estimated and sampled as regression coefficients; (iii) the non-centered time-varying pa-

rameters (α̃∗it, θ̃
∗
it, β̃jt) are sampled using the Kalman filter. The general outline of the Gibbs sampler is

given by:

1. Draw the binary indicators δα, δθ and δβ to determine which time-varying components should be

included in the model.

2. Draw α∗i0, θ∗i0, βj0, β∗\jα together with σ2ε and, if their corresponding indicator is one,
√
ςα,
√
ςθ

and √ςβ . When a binary indicator is zero, the corresponding standard deviation is set to zero as

well.

3. Draw β
∗\j
θ if δβ = 1. When δβ = 0, β∗\jθ is set to zero.

4. Draw α̃∗it, θ̃
∗
it and β̃jt using the Kalman filter if their corresponding binary indicator is one. When

α∗it is selected to be constant (δα = 0), α̃∗it is sampled from its prior distribution using equation

(A.6) and similarly for θ̃∗it (when δθ = 0) and β̃jt (when δβ = 0) using equations (A.7) and (A.8).

Interweaving (IW)

The idea of interweaving is to sample the parameters twice, i.e., once using the CP and a second time

utilizing the NCP. The general outline of our interweaving scheme is as follows:

1. Draw α∗it, θ
∗
it, βjt and β∗\jα using the Kalman filter based on the CP, where α∗it, θ

∗
it and βjt are

restricted to be constant when their corresponding binary indicator is zero.

2. Draw ςα, ςθ and ςβ based on the CP when their corresponding binary indicator is one.

2.∗ Move to the NCP using the standardizations α̃∗it =
α∗it−α∗i0√

ςα
, θ̃∗it =

θ∗it−θ∗i0√
ςθ

and β̃jt =
βjt−βj0√

ςβ

with α∗i0, θ∗i0 and βj0 being the first values of the corresponding time-varying states. When α∗it is

selected to be constant (δα = 0), α̃∗it is sampled from its prior distribution using equation (A.6)

and similarly for θ̃∗it (when δθ = 0) and β̃jt (when δβ = 0) using equations (A.7) and (A.8).

3. Draw the binary indicators δθ , δα and δβ using the NCP.

4. Redraw α∗i0, θ∗i0 and βj0 together with β∗α and σ2ε and, if their corresponding indicator is 1,
√
ςα,

√
ςθ and√ςβ using the NCP. When a binary indicator is zero, the corresponding standard deviation

(and variance parameter) is set to zero as well.

5. Draw β
∗\j
θ if δβ = 1, when δβ = 0 set β∗\jθ = 0 and continue with block 1. To improve the

sampling efficiency we redraw the parameters α∗i0, θ∗i0, β∗\jα and σ2ε and, if their corresponding

indicator is 1,
√
ςα and

√
ςθ.
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Sampling efficiency: non-centered parameterization versus interweaving

Figure A.1 compares trajectories of draws for ςα and ςθ obtained from using the NCP on simulated data

with those from the proposed interweaving scheme. The increase in sampling efficiency is clearly visible

from the graph. More formally, the integrated autocorrelation time drops from 986 to 139 for ςα and

from 1,945 to 160 for ςθ when moving from the NCP to the interweaving scheme.

Figure A.1: Trajectories of the draws from the NCP versus the IW scheme – Simulated data
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0 5000 10000 15000 20000

0

0.2

0.4

0.6

0.8

1
10

-3

(b) ςα - IW
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(c) ςθ - NCP
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(d) ςθ - IW
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Note: Based on simulated data, i.e. one draw using scenario 2 (δα = δθ = 1) from the Monte Carlo
simulation design as outlined in Section A.3 below.

A.2 Detailed description of the interwoven MCMC algorithm

In this subsection we provide details for the constituent blocks of the interwoven MCMC algorithm pro-

posed above. Step 2.* should already be clear from the general outline of the IW scheme and is therefore

not repeated here.

Block 1: Sampling α∗itα
∗
itα
∗
it, θ
∗
itθ
∗
itθ
∗
it, βjtβjtβjt and β∗\jαβ

∗\j
αβ
∗\j
α using the CP

In this block we sample the time-varying states α∗it, θ
∗
it and βjt together with the parameters β∗\jα condi-
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tional on the variance parameters (ςα, ςθ, ςβ , σ2ε ), the binary indicators (δα, δθ, δβ) and β∗\jθ . Define the

auxiliary variable x̃it = xj,it+x
\j
it β
∗
θ , with x\jit = (x1,it, . . . , xj−1,it, xj+1,it, . . . , xK,it). The conditional

state-space representation is given by the observation equation

λt =
[
IN λtIN x̃t x

\j
t

]

α∗t

θ∗t

βjt

β
∗\j
α

+ εt, εt ∼ N
(
0, σ2εIN

)
,

where λt = (λ1t, . . . , λNt)
′, x̃t = (x̃1t, . . . , x̃Nt)

′, x\jt = (x
\j
1t , . . . , x

\j
Nt)
′, IN is an identity matrix of

order N and the evolution of the unobserved states described by
α∗t+1

θ∗t+1

βjt+1

β
∗\j
α

 =


IN 0 0 0

0 IN 0 0

0 0 1 0

0 0 0 IK−1



α∗t

θ∗t

βjt

β
∗\j
α

+


δαIN 0 0

0 δθIN 0

0 0 δβ

0 0 0


ψ

α
t

ψθt

ψβt

 ,
ψ

α
t

ψθt

ψβt

 ∼ N

0,

ςαIN 0 0

0 ςθIN 0

0 0 ςβ


 ,

where α∗t = (α∗1t, . . . , α
∗
Nt), θ∗t = (θ∗1t, . . . , θ

∗
Nt), ψαt = (ψα1t, . . . , ψ

α
Nt)
′ and ψθt = (ψθ1t, . . . , ψ

θ
Nt)
′.

The unobserved states (α∗t , θ
∗
t , βjt) in this linear Gaussian state space model can be evaluated using the

standard Kalman filter and sampled using the backward-simulation smoother of Carter and Kohn (1994).

Note that whenever a binary indicator δα, δθ or δβ equals zero, the corresponding states α∗t , θ
∗
t or βjt

are automatically restricted to be constant over time. Note that the restricted model in equation (24) of

Section 4.1 - where the variables in x don’t have growth effects - can be obtained by setting β∗\jθ = 0,

x̃it = xj,it, δβ = 0 and βjt = βj such that βα = (βj , β
∗\j
α )′.

Block 2: Sampling ςαςαςα, ςθςθςθ and ςβςβςβ using the CP

In this block we sample the variance parameters ςα, ςθ and ςβ conditional on the time-varying states α∗t ,

θ∗t and βjt drawn in Block 1. These variances are only sampled when their corresponding binary indica-

tor δα, δθ or δβ is one. When an indicator is set to zero (in Block 3 below), the corresponding variance

parameter is also set to zero and is not sampled here.

An important aspect of the stochastic model specification search of Frühwirth-Schnatter and Wagner

(2010) is that the Inverse Gamma IG prior on the time-varying state innovation variances ς is replaced

by a Normal prior N(0, V0) on their standard deviations
√
ς in the NCP. This is to avoid that the prior

biases the states α∗it, θ
∗
it and βjt towards being time-varying (see discussion in Subsection 2.3 of the main

paper). When sampling the variances from the CP it is therefore important to use a prior that is consistent
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with the N prior on the standard deviations. Following Kastner and Frühwirth-Schnatter (2014), we use

a Gamma (G) prior ς ∼ V0χ
2
1 = G(12 , 2V0), defined using the shape and scale parameterization, and

where V0 is the prior variance on
√
ς as detailed in Subsection 3.2.1

Since the G prior is non-conjugate we rely on a Metropolis–Hastings (MH) step to update
√
ς . Following

Kastner and Frühwirth-Schnatter (2014), we use the auxiliary conjugate prior paux(ς) ∝ √ς−1, which

denotes the density of an auxiliary improper conjugate IG(−1
2 , 0) prior, to obtain suitable conditional

proposal densities p(ς) as

ςα|α∗t ∼ IG(cNT , C
α
T ), ςθ|θ∗t ∼ IG(cNT , C

θ
T ), ςβ|βjt ∼ IG(cT , C

θ
T ) (A.9)

where cNT = NT/2, cT = T/2, CαT = (∆α∗
′
t ∆α∗t )/2, CθT = (∆θ∗

′
t ∆θ∗t )/2 and CβT = (∆β∗

′
t ∆β∗t )/2.

A candidate draw ςnew from these proposal densities is accepted with a probability of min(1, R), where

R =
p(ςnew)

p(ςold)
× paux(ςold)

paux(ςnew)
= exp

{
ςold − ςnew

2V0

}
, (A.10)

with ςold denoting the last available draw for ς in the Markov chain.

Block 3: Sampling the binary indicators δαδαδα, δθδθδθ and δβδβδβ using the NCP

In this block we sample the binary indicators δα, δθ and δβ to select whether α∗it, θ
∗
it and βjt vary over

time or not. Following Frühwirth-Schnatter and Wagner (2010), when sampling these indicators we

marginalize over the parameters for which variable selection is carried out. To this end, conditional on

the state processes (α̃∗it, θ̃
∗
it, β̃jt) and the parameters β∗\jα and β∗\jθ , the NCP can be written as a standard

linear regression model

z = wδbδ + ε, ε ∼ N(0, σ2εINT ), (A.11)

where z = (z1, . . . , zN )′, with zi = (zi1, . . . , ziT )′ and zit = λit − x\jit β∗α; w = (IN ⊗ ιT , α̃∗, IN ⊗

λ, ιN ⊗ λ� θ̃, x̃, ιN ⊗ β̃j � x̃), with ιT a (T × 1) vector of ones, α̃∗ and θ̃∗ the time-varying parameters

α̃∗it and θ̃∗it stacked over time and countries, x̃ the variable x̃it stacked over time and countries and β̃j

the time-varying parameter β̃jt stacked over time; b = (α∗
′

0 ,
√
ςα, θ∗

′
0 ,
√
ςθ, βj0, √ςβ)′ with α∗0 and θ∗0

the time-invariant parameters α∗i0 and θ∗i0 stacked over countries. The vectors wδ and bδ exclude those

elements in w and b for which the corresponding indicator in δ = (δα, δθ, δβ) is zero, e.g. α̃∗ is excluded

from wδ and
√
ςα from bδ if δα = 0.

A naive implementation of the Gibbs sampler would be to sample δ from g(δ|b, z, w) and b from

1This is based on the general result that X ∼ N(0, σ2) implies X2 ∼ σ2χ2
1 = G( 1

2
, 2σ2).
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g(b|δ, z, w). Unfortunately, this approach violates conditions necessary for convergence as whenever an

indicator in δ equals zero, the corresponding parameter in b is also zero which implies that the Markov

chain has absorbing states. A suggested by (Frühwirth-Schnatter and Wagner, 2010), this can be avoided

by marginalizing over the coefficients in b when sampling δ and subsequently drawing the parameters

b conditional on the sampled indicators. The posterior density g(δ|z, w) can be obtained from using

Bayes’ Theorem as

g(δ|z, w) ∝ g(z|δ, w)p(δ), (A.12)

where p(δ) is the prior probability of the indicators being one and g(z|δ, w) is the marginal likelihood

of the regression model (A.11) where the effect of b has been integrated out. Under the the conjugate

Normal-Inverse Gamma prior

bδ ∼ N(aδ0, A
δ
0σ

2
ε), σ2ε ∼ IG(c0, C0), (A.13)

the closed-form solution for g(z|δ, w) is given by

g(z|δ, w) ∝
∣∣AδT ∣∣0.5∣∣Aδ0∣∣0.5

Γ(cNT )Cc00
Γ(c0)

(
CδT
)cNT , (A.14)

with posterior moments calculated as

aδT = AδT

(
(wδ)′z + (Aδ0)

−1aδ0

)
, (A.15)

AδT =
(

(wδ)′wδ + (Aδ0)
−1
)−1

, (A.16)

cNT = c0 +NT/2, (A.17)

CδT = C0 + 0.5
(
z′z + (aδ0)

′(Aδ0)
−1aδ0 − (aδT )′(AδT )−1aδT

)
. (A.18)

Instead of sampling the indicators in δ simultaneously using a multi-move sampler, we draw δα, δθ

δβ recursively from g(δα|δθ, δβ, z, w) , g(δθ|δα, δβ, z, w) and g(δβ|δα, θβ, z, w) using a single-move

sampler where we randomize over the order in which the indicators are drawn. More specifically, the

binary indicators are sampled from the Bernoulli distribution with probabilities

p(δα = 1|δθ, δβ, z, w) =
g(δα = 1|δθ, δβ, z, w)

g(δα = 0|δθ, δβ, z, w) + g(δα = 1|δθ, δβ, z, w)
, (A.19)

p(δθ = 1|δα, δβ, z, w) =
g(δθ = 1|δα, δβ, z, w)

g(δθ = 0|δα, δβ, z, w) + g(δα, δβ = 1|δα, z, w)
, (A.20)
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p(δβ = 1|δα, δθ, z, w) =
g(δβ = 1|δα, δθ, z, w)

g(δβ = 0|δα, δθ, z, w) + g(δβ = 1|δα, δθ, z, w)
. (A.21)

Block 4: Sampling the parameters αi0, θi0,√ςα, √ςθ, βααi0, θi0, √ςα, √ςθ, βααi0, θi0, √ςα, √ςθ, βα and σ2εσ2εσ2ε using the NCP

In this block we sample the variance σ2ε of the observation errors from IG(cT , C
δ
T ) and the (unrestricted)

parameters in b = (α∗
′

0 ,
√
ςα, θ∗

′
0 ,
√
ςθ, βj0, √ςβ , β∗\jα )′ from N(aδT , A

δ
Tσ

2
ε), using the regression model

(A.11), with z = λ and redefining w = (IN ⊗ ιT , α̃∗, IN ⊗ λ, ιN ⊗ λ� θ̃, x̃, ιN ⊗ β̃ � x̃, x\j) with x\j

the data in x\jit stacked over time and countries. When a binary indicator in δ is zero, the corresponding

variance parameter is not sampled but restricted to be zero. To re-enforce the fact that the sign of the stan-

dard deviations (
√
ςα,
√
ςα,
√
ςβ) and the states (α̃∗it, θ̃

∗
it, β̃jt) are not separately identified, we perform a

random sign switch, e.g.
√
ςα is left unchanged with probability 0.5 while with the same probability it is

replaced by −√ςα.

Block 5: Sampling β∗\jθβ
∗\j
θβ
∗\j
θ

In this last step we sample β∗\jθ if δβ is 1, when δβ = 0 set β∗\jθ = 0 and continue with block 1. To

improve the sampling efficiency we redraw the parameters (α∗
′

0 ,
√
ςα, θ∗

′
0 ,
√
ςθ, β

∗\j
α , σ2ε). Again, we

sample the variance σ2ε of the observation errors from IG(cT , C
δ
T ) and the (unrestricted) parameters in

b = (α∗0,
√
ςα, θ∗0,

√
ςθ, β

∗\j
α , β∗β) from N(aδT , A

δ
Tσ

2
ε), using the regression model (A.11), redefining

zit = λit − βjtxj,it and w = (IN ⊗ ιT , α̃∗, IN ⊗ f̂ , ιT ⊗ λ� θ̃∗, x\j , ιN ιK−1′ ⊗ βj � x\j) where βj is

βjt stacked over time. When a binary indicator in (δα, δθ) is zero, the corresponding variance parameter

is not sampled but restricted to be zero.

A.3 Monte Carlo simulation

In this section, we present Monte Carlo simulation results to examine the performance of the MCMC

algorithm outlined in Section A.2. We will focus on the ability of the Bayesian stochastic model speci-

fication search to detect time variation in the stochastic absorptive capacity parameters and on the small

sample performance of inference on the unknown parameters in the most general model specification

presented in Section 4.1 of the main paper.

Design

To make sure that our simulation results are relevant for putting the estimation results presented in the

main paper in perspective, we simulate data for exactly the same sample size (T = 62, N = 31) that is

available to us while the data generating process for log TFP λit = yit − βikit is chosen to match with
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the properties of the observed data. More specifically, we simulate data for λit from

λit = αit + θitft + εit, (A.22)

where

αit = αi0 + δα
√
ςαα̃it, with α̃it = α̃it−1 + ψ̃αit, α̃i0 = 0, ψ̃αit ∼ N (0, 1) , (A.23)

θit = θi0 + δθ
√
ςθθ̃it, with θ̃it = θ̃it−1 + ψ̃θit, θ̃i0 = 0, ψ̃θit ∼ N (0, 1) , (A.24)

ft = c+ ft−1 +
√
ςfψ

f
t , ψft ∼ N(0, 1). (A.25)

and αi0 ∼ N(0, σ2α), θi0 ∼ N(1, σ2θ), εit ∼ N(0, σ2ε).

Values for the unknown parameters are taken from the baseline estimation results presented in Section

3.3 of the main paper. First we set σε = 0.01. Second, from the estimated values for αi0 and θi0 we

calculate their standard deviation over countries to be σα = 0.62 and σθ = 0.24. Third, we generate

ft from equation (A.25) using c = 0.014 and √ςf = 0.013. These values are obtained by fitting a

random walk with drift to the cross-sectional average λt of λit (which is our proxy for ft). Finally,

we set
√
ςα =

√
ςθ = 0.02, which is in line with the unrestricted estimated standard deviation of the

innovations to αit reported in Table 2 of the main paper.

We consider four different scenarios concerning the presence of time variation in the absorptive capacity

parameters αit and θit, i.e., we set (δα, δθ) equal to (0, 0), (1, 1), (1, 0) and (0, 1). This implies that αit

and θit are constant in the first scenario, while both are time varying in the second scenario. In the third

and fourth scenario, there is only time variation in αit and θit respectively. We generate 2,000 samples

for each of the four scenarios. For each of the generated samples, we estimate the baseline and extended

model using the MCMC algorithm outlined in Section A.2 with 50,000 draws of which the first 10,000

are discarded as burn-in.

Performance in the baseline model

We first estimate the baseline model outlined in Section 2 of the main paper to examine to what extent

our Bayesian model selection approach is able to discriminate between the four different scenarios of

time variation in αit and θit and its performance for estimating
√
ςα and

√
ςθ. Simulation results for

each of the four scenarios are reported in Table A.1. We report selection fractions and average posterior

inclusion probabilities for the binary indicators δα and δθ and for their combinations, together with the

mean and standard deviation (over the Monte Carlo samples) of the median of the posterior distributions

of
√
ςα and

√
ςθ (see notes to Table A.1 for details). The results show that our Bayesian model selection

approach is very effective in detecting time variation. In each of the four scenarios, it picks the correct

model in 96% or more of the samples. Moreover, the mean of the estimates for
√
ςα and

√
ςθ is always
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close to the true value of 0 in case of no time variation and 0.02 in case of time variation.

Table A.1: Monte Carlo simulation results - Baseline model

Model selection frequencies Posterior distribution

Scenarios Indicators Models (δα, δθ) parameter

(δα, δθ) δα δθ (0,0) (1,0) (0,1) (1,1)
√
ςα

√
ςθ

(0, 0) 0.00 0.00 1.00 0.00 0.00 0.00 0.0000 0.0000
[0.00] [0.00] [1.00] [0.00] [0.00] [0.00] (0.0000) (0.0000)

(1, 0) 1.00 0.01 0.00 0.99 0.00 0.01 0.0204 0.0001
[1.00] [0.03] [0.00] [0.97] [0.00] [0.03] (0.0006) (0.0009)

(0, 1) 0.04 1.00 0.00 0.00 0.96 0.04 0.0005 0.0202
[0.07] [1.00] [0.00] [0.00] [0.93] [0.07] (0.0022) (0.0007)

(1, 1) 0.98 1.00 0.00 0.00 0.02 0.98 0.0201 0.0196
[0.98] [1.00] [0.00] [0.00] [0.02] [0.98] (0.0036) (0.0026)

Notes: Based on 2,000 samples of size N = 31 and T = 62 generated using equations (A.22)-(A.25). For each sample,
we estimate the baseline model presented in Section 2 of the main paper using MCMC with 50, 000 iterations after a burn-in
of 5, 000 draws. The model selection frequencies are calculated as the fraction a certain indicator or model is selected (i.e.,
has a posterior inclusion probability larger than 0.5) over the Monte Carlo samples. In each sample, the posterior inclusion
probabilities are calculated as the fraction of MCMC draws in which the stochastic model specification search prefers a model
which allows for time variation in the corresponding parameter. Values in square brackets are average posterior inclusion
probabilities over the Monte Carlo samples. For the parameters

√
ςα and

√
ςθ , reported are the mean over the Monte Carlo

samples of the median of the posterior distribution obtained using MCMC in each sample. Note that when an indicator δα or δθ
is zero, the corresponding standard deviation

√
ςα or

√
ςθ is also set to zero. The values in brackets are the standard deviations

of the median over the Monte Carlo samples.

Performance of the extended approach

Second, we use the data as simulated from equations (A.22)-(A.25) but now treat αit and θit as observed

data. In particular, we set x1,it = θit − 1
N

∑N
i=1 θit −

1
T

∑T
t=1 θit + 1

NT

∑N
i=1

∑T
t=1 θit and x2,it =

αit − 1
N

∑N
i=1 αit −

1
T

∑T
t=1 αit + 1

NT

∑N
i=1

∑T
t=1 αit such that equation (A.22) can be rewritten as

λit = α∗it + β2αx2,it + (θ∗it + β1θx1,it)ft + εit, (A.26)

with α∗it = 1
N

∑N
i=1 αit + 1

T

∑T
t=1 αit −

1
NT

∑N
i=1

∑T
t=1 αit and θ∗it = 1

N

∑N
i=1 θit + 1

T

∑T
t=1 θit −

1
NT

∑N
i=1

∑T
t=1 θit capturing the means removed from the simulated αit and θit when constructing x1,it

and x2,it. The values for β2α and β1θ depend on whether there is time variation in αit and θit respectively.

If there is time variation in αit (i.e., δα = 1), β2α = 1, while β2α = 0 otherwise. If there is time variation

in θit (i.e., δθ = 1), β1θ = 1 while β1θ = 0 otherwise. Note that β1α and β2θ are always zero.

We estimate the extended specification presented in Section 4.1 of the main paper. For the current two-

variable case, this is given by

λit = α∗it + β1tx1,it + (β∗2α + β1tβ
∗
2θ)x2,it + θ∗ityt + εit. (A.27)

with β∗2θ = β2θ/β1θ = 0 and the four different scenarios for time variation in αit and θit as outlined in

the design above implying the following for β1t = (yt − a∗t )β1θ/ϑ
∗
t and β∗2α = β2α:

1. (δα, δθ) = (0, 0): β1t = 0 is constant and β∗2α = 0
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2. (δα, δθ) = (1, 0): β1t = 0 is constant and β∗2α = 1

3. (δα, δθ) = (0, 1): β1t = (yt − a∗t )/ϑ
∗
t is time varying and β∗2α = 0

4. (δα, δθ) = (1, 1): β1t = (yt − a∗t )/ϑ
∗
t is time varying and β∗2α = 1

Simulation results for estimating the unrestricted model in equation (A.27) under each of the four sce-

narios of time variation are reported in the left panel of Table A.2. In particular, we report the fraction of

samples in which β1t is chosen to be time varying by the Bayesian model selection algorithm together

with the mean and standard deviation (over the Monte Carlo samples) of the median of the posterior

distributions of β∗2α and β∗2θ (see notes to Table A.2 for details). The results show that our Bayesian

model selection approach is very effective in detecting time variation in β1t (and hence testing whether

β1θ is zero or not). In each of the four scenarios, it always picks the correct model. Moreover, the mean

of the estimates for β∗2α and β∗2θ is always close to the true value of 0 for β∗2θ and 0 (when δα = 0) or 1

(when δα = 1) for β∗2α. In the right panel of Table A.2, we report estimates of the restricted version of

the extended model presented in equation (24) of Section 4.1. This model is only valid in the first two

scenarios where δθ = 0 as it requires βkθ = 0 (∀k). The results show that the mean of the estimates for

β1α and β2α, which are now identified, is always close to the true value of 0 for β1α and 0 (when δα = 0)

or 1 (when δα = 1) for β2α.

Table A.2: Monte Carlo simulation results - Extended model

Unrestricted model Restricted model

Scenarios Indicator Posterior distribution parameters

(δα, δθ) δβ β∗2α β∗2θ β1α β2α

(0, 0) 0.00 0.00 0.00 0.00 0.00
[0.01] (0.01) (0.00) (0.01) (0.01)

(1, 0) 0.00 1.00 0.00 0.00 1.00
[0.01] (0.01) (0.00)) (0.01) (0.01)

(0, 1) 1.00 0.00 0.00
[1.00] (0.03) (0.02)

(1, 1) 1.00 1.00 0.00
[1.00] (0.03) (0.03)

Notes: Based on 2,000 samples of size N = 31 and T = 62 generated using equations (A.22)-(A.25). For each sample, we
estimate the extended model presented in Section 4.1 of the main paper using MCMC with 50, 000 iterations after a burn-in
of 5, 000 draws. For the indicator δβ we report the frequency β1t is chosen to be time varying (i.e. has a posterior inclusion
probability larger than 0.5) over the Monte Carlo samples. In each sample, the posterior inclusion probability is calculated as
the fraction of MCMC draws in which a model with time variation in β1t is preferred. Values in square brackets are average
posterior inclusion probabilities over the Monte Carlo samples. The summary statistics for the parameters are the mean over the
Monte Carlo samples of the median of the posterior distribution obtained using MCMC in each sample. The values in brackets
are the standard deviations of the median over the Monte Carlo samples.
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Appendix B Additional Figures

Figure B.1: Posterior results for the absorptive capacity parameter αit (θit = 1)
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Notes: Reported are the posterior mean and 68% highest density interval (HDI) for a parsimonious-hybrid model setting
θit = θi and additionally θi = 1 for those countries where the posterior probability that θi 6= 1 is smaller than 0.5. Based
on MCMC with K = 200, 000 iterations where the first B = 20, 000 are discarded as burn-in. The average integrated
autocorrelation time across the plotted α’s is 1.
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Figure B.2: Human Capital Index (PWT)
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Appendix C Case Studies of Structural and Economic Reforms

C.1 Ireland

Known during the 1950s as ‘the poorest of the richest’ economies, Ireland managed to transform its

economy to one of the most productive in Europe today. Figure 3 in the main paper shows Ireland’s

absorptive capacity to be stable until the early 1970s. This, however, was not a favorable position since

αit was well below the sample average. Years of protectionism and introspective policy from the 1930s

onwards effectively obstructed foreign capital flowing into Ireland. The Control of Manufactures Acts

of 1932 and 1934, for instance, had the goal to ensure that new industries would be Irish-owned. Their

abolishment in 1957 signaled a transition from a nationally-controlled to an outward-looking economy, a

policy stance which eventually resulted in the accession to the EEC in 1973. Opening up borders for freer

trade and the benefits of EEC membership led to a first surge of αit during the 1970s. Seeking to boost

domestic demand even further, Ireland’s administration turned to Keynesian expansionary policies. This

however did not lead to the expected outcome since a substantial share of the fiscal stimulus was spent

on imports, resulting in a large negative trade balance and inflationary pressure. The adverse effects on

investments translated in a stagnant αit during the 1980s. By the early 1990s Ireland entered a period of

stunning growth in absorptive capacity. A combination of low tax rates, capital grants, a well-educated

workforce and active targeting successfully attracted US high-tech companies searching for a European

base. The resulting stream of incoming FDI fostered Ireland’s stock of knowledge, which in turn led to

a steep increase of its absorptive capacity.

C.2 Sweden

Sweden’s absorptive capacity evolution is characterized by a moderate deterioration from an advanta-

geous starting point in the 1960s. Having perhaps even fallen behind the sample average in the early

1990s, the country was able to regain lost ground in just over a decade and a half. Unharmed by the

widespread destruction of WWII, the post-war adoption of new technologies led to the creation of a

strong industrial economy, based on modern-day giants such as Volvo, Saab and Ikea which were all

founded during this period. At the same time, the welfare state was expanded, wage policy with central-

ized negotiations came into play and a higher degree of regulation applied to capital and labor markets.

This evolved into a situation where the government played a pro-active role in shaping economic devel-

opment and the industrial sector was strongly assisted by public investment. While this was effective in

stimulating traditional manufacturing, it proved to be less fruitful during the breakthrough of microelec-

tronics. Instead of transforming the economy throughout the 1970s and 1980s, the focus of successive

governments was to save failing industries with excessive subsidies. This hampered the incentive to de-

velop or adopt new technologies, leading to a gradual decline of Sweden’s absorptive capacity. Steps to-

wards deregulating capital markets, enhancing competition, opening up borders even further and putting
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a halt to the expansion of the government helped to ameliorate αit. Paradoxically, deregulation of capital

markets brought Sweden into a financial crisis, though the resulting real economy downturn was con-

tained efficiently by 1993. Market competition was further intensified following Sweden’s accession to

the EU in 1995. The outcome of these policy interventions was a clear improvement of the country’s

absorptive capacity since the late 1990s.

C.3 Japan

At the start of the 1950s, the absorptive capacity of Japan was among the highest of all countries in

our dataset and it continued to improve throughout the 1960s and 1970s. An important factor in the

post-war ‘Japanese miracle’ was rationalization by adopting and adapting the latest vintages of foreign

technology. It was the desire of the Japanese government to allocate its resources to a limited number of

industries in which it believed to possess a comparative advantage rather than allow for a market-based

orientation. To this end the government created a number of financial intermediaries whose main task

was to channel funds to key industries. On the downside, small businesses and services faced a lack of

investment. Along with weak domestic competition this created a productivity disparity between these

firms and the sectors targeted by the government. All in all, this strategy brought about an outward-

looking economy well-equipped to incorporate technological advances. The importance of exports as

an incentive to innovate cannot be underestimated, as international competition countered the disad-

vantages linked to weaker domestic competition. From the 1970s onwards and through the 1980s and

1990s Japan’s relative absorptive capacity continuously declined, highlighting the catch-up process in

manufacturing technology in Europe and North America, fueled in part by the widespread adoption of

‘Japanese management techniques’. The model upon which Japan’s success was built however appeared

to be ill-suited to transform the economy towards a new reality where non-tradables and services have

come to dominate. Targeting industries, protecting domestic markets, low levels of competition and

excessive regulations hindered productivity growth in these markets. Information and Communication

Technologies (ICT) only gradually found their way to Japanese firms as high job security made it difficult

for companies to shed unskilled labor Moreover, Japan is facing an aging working force further holding

down productivity growth.
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