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1 Introduction

In this note we consider the estimation of mean slope coefficients in a linear heterogeneous
panel model where unobserved common factors lead to correlations in the disturbances across
units and to correlations between the disturbances and the regressors. We introduce the Aug-
mented Mean Group (AMG) estimator and employ Monte Carlo experiments to investigate its
small sample performance as well as that of a number of pooled and heterogeneous parameter
estimators — including the popular Pesaran (2006) common correlated effects (CCE) estima-
tors — in various contexts, including that of variable and factor nonstationarity.

Our investigation is motivated by the range of parameter estimates obtained from cross-country
production function regressions for the manufacturing and agriculture sectors (see Eberhardt,
Helmers, & Strauss, 2013; Eberhardt & Teal, 2012, 2013, 2014), where the combination of
technology heterogeneity, variable nonstationarity and cross-section dependence (CSD) can
lead to severe distortions in the estimates from standard panel estimators. In the present note
we provide further evidence as to the importance of accounting for heterogeneity, nonstation-
arity and cross-section dependence in macro panel data, taking the viewpoint of the applied
econometrician. Building on Coakley, Fuertes, and Smith (2006) and Kapetanios, Pesaran, and
Yamagata (2011), we highlight the practical shortcomings of the Monte Carlo Data Generating
Processes (DGPs) adopted in these studies. Our own simulations provide patterns of results
more in line with those observed in the applied cross-country empirical literature. A brief
empirical application highlights the merits of the AMG approach.

The remainder of this note is organised as follows: Section 2 introduces the empirical frame-
work and the Augmented Mean Group (AMG) estimator. In Section 3 we discuss our sim-
ulation setup, four scenarios for analysis as well as the Monte Carlo results. An empirical
illustration is provided in Section 4. The final section concludes.

2 The Augmented Mean Group estimator

We adopt the following empirical model: for i = 1, . . . , N , t = 1, . . . , T andm = 1, . . . , k,

yit = β′i xit + uit uit = αi + λ′i ft + εit (1)

xmit = πmi + δ′mi gmt + ρ1mi f1mt + . . .+ ρnmi fnmt + vmit (2)

where f ·mt ⊂ ft ft = %′ft−1 + εt and gt = κ′gt−1 + εt (3)

where xit is a vector of observable covariates. The unobservables uit are modelled as a com-
bination of group-specific effects αi and a set of common factors ft with group-specific factor
loadings λi. In equation (2) we provide a representation of the k observable regressors, which
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are modelled as linear functions of unobserved common factors ft and gt, with respective
group-specific factor loadings. Equation (3) specifies the evolution of the unobserved factors.
We maintain the following assumptions for the general model and the data it is applied to:

A.1 The βi parameters are unknown random coefficients with fixed means and finite vari-
ances: βi = β + ηi where ηi ∼ iid(0,Ωη). Similarly for the factor loadings.1

A.2 Error terms εit ∼ N(0, σ2), where σ2 is finite. Similarly for vmit and εt.

A.3 Observables xit and yit, as well as the unobserved common factors ft and gt are not a

priori assumed to be stationary: |%| ≤ 1, |κ| ≤ 1.

A.4 The unobserved common factors with heterogeneous factor loadings λ′ift, can contain
elements which are common across groups as well as elements which are group-specific.

A.5 There is an overlap between the unobserved common factors driving y and x (f ·mt ⊂
ft), creating serious difficulties for the identification of βi or its mean.

The most important features of this setup are (i) the potential nonstationarity of observables
and unobservables (yit, xit, ft, gt), and (ii) the potential heterogeneity in the impact of ob-
servables and unobservables across panel groups (αi, βi, λi). Taken together these properties
have important bearings on estimation and inference in macro panel data (Coakley et al., 2006;
Pesaran, 2006; Kapetanios et al., 2011; Chudik & Pesaran, 2013).

We now introduce a novel estimation approach, the Augmented Mean Group (AMG) estimator,
which accounts for cross-section dependence by inclusion of a ‘common dynamic effect’ in the
group-specific regressions. This variable is constructed from the period dummy coefficients of
a pooled regression in first differences and represents the levels-equivalent average evolution of
unobserved common factors across all panel groups. Provided the unobserved common factors
form part of the group-specific cointegrating relation — this matches the assumption of the
Pesaran (2006) CCE estimators (Pedroni, 2007) — the augmented regression model captures
this relationship.

AMG Stage (i) ∆yit = b′∆xit +
T∑
t=2

ct∆Dt + eit ⇒ ĉt ≡ µ̂•t (4)

AMG Stage (ii) yit = ai + b′ixit + cit+ diµ̂
•
t + eit ⇒ b̂AMG = N−1

∑
i

b̂i (5)

The first stage represents a standard Ordinary Least Squares (OLS) regression in first differ-
ence (FD-OLS) with T − 1 period dummies in first differences ∆Dt, from which we collect
the estimated coefficients which are relabelled as µ̂•t . This process is extracted from the pooled
regression in first differences since nonstationary variables and unobservables can severely bias

1The assumption of random coefficients is for convenience. Based on the findings by Pesaran and Smith (1995,
footnote 2, p.81) the coefficients could alternatively be fixed but differing across groups.
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the estimates in a pooled levels regressions. In the second stage this constructed variable µ̂•t
is included in each of the N group-specific regressions, which also include linear trend terms
to capture omitted idiosyncratic processes which evolve in a linear fashion over time. Alterna-
tively (not shown) we can subtract µ̂•t from the dependent variable, which implies the common
process is imposed on each group with unit coefficient — AMG(i) below.2 In either case the
AMG estimates are derived as averages of the individual β̂i estimates, following the Pesaran
and Smith (1995) Mean Group approach.

The AMG is closely related to the approach in Coakley, Fuertes, and Smith (2002), which
included principal components extracted from pooled OLS regression residuals in second-
stage group-specific regressions following the standard Pesaran and Smith (1995) Mean Group
model.3 It is also related to the Mean Group version of the Pesaran (2006) CCE estimators
(CMG), which augments the group-specific regression with panel cross-section averages of the
dependent and independent variables. The AMG approach uses an explicit rather than implicit
estimate for ft from the pooled first stage regression: from (1) we obtain

∆yit = βi∆xit + λ′i∆ft + ∆uit (6)

Pooled estimation of this model yields the common or mean evolution of unobservables in
levels across panel groups over time µ̂•t . Our pooled estimate is some function h(·) of the
unobserved common factors ft: µ̂•t = h(λ̄ft). Plugging this estimate back into the model in
equation (1) yields

yit = αi + βixit + λi h(λ̄ft) + uit (7)

From equation (7) we can see that provided there are no issues related to ∆uit in the first stage
regression — see simulation setup (iii) below — the estimate µ̂•t obtained can be included in
the second stage to account for the unobserved common factors ft and allow for their hetero-
geneous impact on yit. The AMG and CMG share a simplicity of implementation — both
represent standard MG models augmented with additional covariates and estimated by OLS —
which makes them particularly attractive for applied work.

3 Simulations

We conducted initial Monte Carlo simulations following the setups in Coakley et al. (2006) and
Kapetanios et al. (2011), finding that the use of ‘naïve estimators’ ignoring slope heterogeneity

2Note that unity is also the Mean Group average estimate expected for the coefficients on µ̂•
t : d̄ =

N−1
∑

i di = 1. The period dummy coefficients which make up µ̂•
t represent an average of the unobservables

and their group-specific factor loadings across groups.
3Coakley et al. (2002) laid the foundation for more recent implementations which are based on the same

intuition but carry out iterations of the two steps to avoid the serious bias introduced in the misspecified pooled
OLS regression (Bai & Kao, 2006; Bai, Kao, & Ng, 2009).
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and the factor setup (pooled OLS or 2-way fixed effects estimators) did not create considerable
bias provided their empirical implementation included period dummies — a standard prac-
tice in the applied literature. This is surprising, since these estimators impose common factor
loadings across groups on all unobserved common factors. This analysis (setups and results are
available in an Online Appendix) would suggest that estimators which account for cross-section
dependence do not yield a dramatically different result in terms of bias from standard pooled
estimators which ignore this dependence.4 This conclusion is at odds with the experience in
applied work, where we see vast differences in coefficient estimates between the pooled OLS
and Fixed Effects estimates on the one hand, and the CCE and AMG-type estimators on the
other — see our empirical illustration in Section 4. In the following we therefore consider a
number of alternative scenarios which create patterns of results somewhat more in line with
those observed in real data applications.

We define our dependent variable and regressor as

yit = βixit + uit uit = αi + λyi1f1t + λyi2f2t + εit (8)

xit = ai + λxi1f1t + λxi3f3t + εit εit = ρεi,t−1 + eit (9)

The serially-correlated x-variable is in practice constructed using a dynamic equation

xit = (1− ρ)ai + λxi1f1t − ρλxi1f1,t−1 + λxi3f3t − ρλxi3f3,t−1 + ρxi,t−1 + eit

which we begin with xi,−49 = ai and then accumulate for t = −48, . . . , 0, 1, . . . , T , discarding
the first 50 time-series observations for all i. The common AR-coefficient is ρ = .25.

The unobserved common factors are nonstationary processes with individual drifts so as to
ensure upward evolution over time, as observed in many macro data series.

fjt = µj + fj,t−1 + υfjt t = −48, . . . , 0, 1, . . . , T fj,−49 = 0 (10)

υfjt ∼ N
(
0, σ2

fj

)
σ2
fj = .00125 µj = {0.015, 0.012, 0.01} j = 1, 2, 3

The error terms for the y and x equations are defined as

eit ∼ iidN(0, σ2
e,i) where σ2

e,i ∼ U [.001, .003]

εit ∼ iidN(0, σ2
ε) σ2

ε = .00125

The slope coefficient on x is set to βi = 1 + eβi where eβi ∼ U [−.25,+.25]. The factor
loadings are uniformly distributed, with λxi1 and λyi1 iid U [0, 1] respectively, and λxi3 and λyi2 iid
U [.25, 1.25] respectively.

4Coakley et al. (2006) were the first to point out the surprising limited bias for the two-way fixed effects
estimator in their simulations.
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We consider the following cases:

(i) baseline (as above),
(ii) baseline with additional group-specific linear trends,

(iii) feedbacks: an idiosyncratic shock to y feeds back into x with one period lag, and
(iv) two ‘clubs’ of countries with the same β coefficient.

The group-specific linear trends in Case (ii) are distributed U [−.02,+.03], s.t. that the mean
annual growth rate across the panel is non-zero. For the feedback case, the lagged error εi,t−1
from the y-equation in (8) is included in the x-equation in (9) with coefficient .25 (in practice
we enter this term in the same way as the other terms in the dynamic equation as described
above). Finally, for the ‘two clubs’ case 20% of panel groups have β = 2, while 80% have
β = .75, s.t. the mean β across all groups is still unity.

— Table 1 about here —

Results for the case of T = 30 and N = 50 are presented in Table 1. This combination was
chosen to match the dimensions of the panel in the empirical illustration (Section 4). Results
for other combinations of N and T can be found in an Online Appendix.

Results for our benchmark specification — Case (i) — indicate that 2FE has bias of .0324 with
empirical standard error of .0876, compared to .0271 for the infeasible FE estimator. Similarly
for the POLS and MG estimator. In all cases this bias is increasing in T and decreasing in N .
For the CCE and AMG estimators, all unbiased, the AMG(ii) is commonly most efficient.

Once we add the idiosyncratic trend terms — Case (ii) — the bias in the standard pooled
estimators does not change by any significant margin. 2FE now has a bias of .0277, but a very
substantial empirical standard error of .1973 (more than double that of the benchmark case),
compared with .0280 for the infeasible FE estimator. This imprecision increases with T . In
contrast the unbiased CCE and AMG estimators are still efficient.

By construction, the feedback setup — Case (iii) — leads to bias in the FD-OLS, which carries
over to the AMG estimators: due to differencing the εi,t−1 are contained in both the errors and
the regressors of the FD-OLS estimation equation, whereas this is not the case in the other
(levels-based) estimators which account for common factors. We therefore also present the
results for an IV-version of the FD-OLS estimator, where we use growth rates at time t − 1

as instruments for the endogenous growth rates at time t (FD-IV), and AMG estimators which
are based on the year dummies from this instrumented first stage regression (AMG-IV). The
pooled OLS, 2FE and MG results are virtually unchanged from the baseline results: 2FE has a
bias of .0299 with empirical standard error of .0865 compared with .0271 for the infeasible FE
estimator. The augmented estimators all display small finite sample bias, albeit very modest
in case of the CCE estimators, while the new AMG estimates based on the FD-IV results are
unbiased. The latter is unbiased, but inefficient compared with the new AMG estimators.
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In the setup where β is heterogeneous but only takes two values for different ‘clubs’ of panel
groups — Case (iv) — the results show considerable bias for the POLS estimator, while other
estimators remain relatively unchanged: the 2FE estimator has a bias of .0224 and an empirical
standard error of .1375 compared with .0357 for the infeasible FE. The small finite sample bias
for the AMG(ii) implementation is wiped out in the instrumented version AMG(ii)-IV.

In addition to these cases we also experimented with (a) normally distributed βi and factor
loadings, (b) large variation in factor loadings, (c) large variation in slope coefficients, as well
as various combinations of these cases. We also analysed a version of the AMG where we
allowed for slope heterogeneity in the first stage estimation via interaction terms. All of these
results (contained in an Online Appendix) confirm the performance of the AMG estimators
while highlighting more substantial bias in the naïve estimators (POLS, 2FE, MG).

4 Empirical Illustration

In Table 2 we present results from Cobb-Douglas production function regressions in a sample
of 48 developing and developed countries for 1970–2002. The data are taken from UNIDO
(2004) and described in more detail in Eberhardt and Teal (2012). Of the pooled estimators in
Panel (A) only the FD-OLS results in stationary and cross-sectionally independent residuals.
Its capital coefficient, at around .3, is in line with income share data (Gollin, 2002). Note the
inflated capital coefficients in the POLS and 2FE models where residual diagnostics indicate
serious misspecification. Among the heterogeneous estimators the MG and standard CMG
display cross-sectionally dependent residuals, while the AMG and CMG with additional id-
iosyncratic trend terms yield favourable diagnostics and mean capital coefficients close to .3.
Closer investigation of these estimates indicates that they are not driven by outliers.

— Table 2 and Figure 1 about here —

Figure 1 plots the estimates on the year dummy coefficients in the first stage of the AMG es-
timators. In the present application this represents the average global total factor productivity
(TFP) evolution over the sample period. We can detect patterns in this evolution which corre-
spond to global events (e.g. 1970s oil crises) and further obtain a mean estimate for TFP growth
of around 1.5% per annum, which also seems reasonable.

5 Concluding Remarks

In this note we introduced a very simple panel time series approach, the Augmented Mean
Group estimator, which in Monte Carlo simulations was shown to be robust to a great many
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empirical setups, its performance matching that of the Pesaran (2006) CCE estimators.5 This
aside, we pointed out the dramatic change in simulated performance for ‘naïve’ estimators
(POLS, 2FE) once they were augmented with year dummies — a standard practice in the ap-
plied literature — and provided some alternative simulation DGPs where their performance is
less favourable and thus more in line with empirical practice using real data. Our empirical
illustration highlighted the applicability of the AMG estimator for cross-country production
function estimation.
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Tables and Figures

Table 1: Simulation Results

(i) BASELINE MODEL (ii) HETEROGENEOUS TRENDS

mean median emp. stea mean steb mean median emp. stea mean steb

POLS 0.9754 0.9815 0.2139 0.0413 0.9731 0.9688 0.3102 0.0567
2FE 1.0324 1.0312 0.0876 0.0269 1.0277 1.0283 0.1973 0.0552
CCEP 0.9995 0.9975 0.0333 0.0222 0.9991 1.0003 0.0395 0.0275
FD-OLS 1.0021 1.0015 0.0342 0.0237 1.0025 1.0031 0.0351 0.0250
FE (inf) 1.0000 0.9996 0.0271 0.0161 0.9998 0.9995 0.0280 0.0179

CMG 0.9992 0.9975 0.0338 0.0327 0.9997 0.9997 0.0404 0.0400
AMG(i) 1.0026 1.0008 0.0323 0.0319 1.0049 1.0047 0.0506 0.0322
AMG(ii) 1.0018 1.0004 0.0326 0.0304 1.0090 1.0080 0.0558 0.0432
MG 1.1259 1.1143 0.1825 0.0388 1.1269 1.1185 0.1848 0.0390
MG (inf) 0.9999 0.9989 0.0267 0.0267 1.0017 1.0019 0.0286 0.0281

(iii) FEEDBACKS (iv) β-CLUBS

mean median emp. stea mean steb mean median emp. stea mean steb

POLS 0.9754 0.9818 0.2138 0.0413 0.5539 0.5537 0.3778 0.1267
2FE 1.0299 1.0285 0.0865 0.0267 1.0224 1.0171 0.1375 0.0388
CCEP 0.9867 0.9851 0.0330 0.0219 1.0017 1.0000 0.0384 0.0257
FD-OLS 0.9149 0.9136 0.0341 0.0235 1.0023 1.0009 0.0401 0.0283
FD-IV 1.0004 0.9993 0.0813 0.0237 1.0011 0.9960 0.0968 0.0284
FE (inf) 0.9924 0.9923 0.0271 0.0159 0.9999 0.9994 0.0357 0.0207

CMG 0.9828 0.9819 0.0333 0.0322 0.9996 0.9991 0.0260 0.0747
AMG(i) 0.9552 0.9541 0.0340 0.0316 1.0045 1.0018 0.0541 0.0750
AMG(i)-IV 0.9959 0.9953 0.0486 0.0317 0.9970 0.9942 0.0512 0.0748
AMG(ii) 0.9511 0.9503 0.0338 0.0303 1.0132 1.0108 0.0625 0.0746
AMG(ii)-IV 1.0015 0.9995 0.0542 0.0303 1.0064 1.0025 0.0603 0.0744
MG 1.1157 1.1043 0.1799 0.0384 1.1260 1.1166 0.1827 0.0788
MG (inf) 0.9888 0.9884 0.0265 0.0265 1.0000 1.0003 0.0174 0.0734

Notes: All results are for 1,000 replications in a panel with N = 50 and T = 30. Further results for other
combinations of T and N are presented in an Online Appendix. For each estimator we report the mean and
median for the 1,000 estimates of average β (β̄).
a ‘emp. ste’ refers to the empirical standard error, the standard deviation of the 1,000 estimates of β̄.
b ‘mean ste’ refers to the sample mean of the estimated standard errors in the 1,000 estimations of β̄, which
follow Pesaran and Smith (1995).
Estimators: POLS – pooled OLS with period dummies; 2FE – Two-way Fixed Effects (accounts for group- and
period-specific effects); CCEP – Pesaran (2006) pooled CCE estimator; FD-OLS – pooled OLS with variables in
first difference (includes year dummies); FD-IV – dto. using once-lagged differences to instrument for
endogenous x; CMG – Pesaran (2006) Mean Group CCE estimator; AMG(i) – Augmented Mean Group
estimator, µ̂•

t imposed with unit coefficient; AMG(ii) – AMG estimator with µ̂•
t included as additional regressor;

AMG(i)-IV and AMG(ii)-IV – AMG estimators where in the first stage once-lagged differences are used to
instrument the endogenous x; MG – Pesaran and Smith (1995) Mean Group estimator. Two ‘infeasible
estimators’ (inf) for FE and MG contain the unobserved common factors as additional regressors.
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Table 2: Manufacturing Production Functions (CRS imposed)

PANEL (A): POOLED MODELS

[1] [2] [3] [4]
estimator POLS 2FE CCEP FD

dependent variable ly ly ly ∆ly

log capital pw 0.7895 0.6752 0.5823
[72.97]∗∗ [29.89]∗∗ [23.38]∗∗

∆log capital pw 0.3195
[3.61]∗∗

intercept 1.1474 2.3786 0.2489
[8.47]∗∗ [9.98]∗∗ [0.63]

Diagnostics
CRS: F .96 .00 .00 .72
FE: F .00 .00
I(1) 1.00 .78 .00 .00
CD .15 .05 .03 .39
RMSE .462 .135 .113 .103

PANEL (B): HETEROGENEOUS PARAMETER MODELS

[1] [2] [3] [4] [5]
estimator MG AMG AMG CMG CMG

dependent variable ly ly-µ̂•
t ly ly ly

log capital pw 0.1789 0.2896 0.2982 0.4663 0.3125
[2.25]∗ [3.95]∗∗ [3.70]∗∗ [6.76]∗∗ [3.72]∗∗

common trend 0.8787
[4.39]∗∗

country trend 0.0174 0.0001 0.0023 0.0108
[5.95]∗∗ [0.04] [0.56] [3.09]∗∗

intercept 7.6528 6.3823 6.2431 0.8961 4.7860
[9.05]∗∗ [8.42]∗∗ [7.40]∗∗ [0.89] [3.66]∗∗

Diagnostics
I(1) .00 .00 .00 .00 .00
CD .00 .96 .30 .02 .82
RMSE .100 .097 .091 .100 .088

Notes: Regressions are for N = 48 countries, n = 1, 194 (n = 1, 128) observations in the levels (first difference)
specifications. Values in brackets are absolute t-statistics, based on White heteroskedasticity-consistent standard
errors in Panel (A) and following Pesaran and Smith (1995) in Panel (B). We indicate statistical significance at
the 5% and 1% level by ∗ and ∗∗ respectively.
All variables are in logs. Dependent variable: ly — log value-added per worker. ∆ly — growth rate of
value-added (per worker). µ̂•

t in Panel (B) is derived from the year dummy coefficients of a pooled regression
(CRS imposed) in first differences (FD-OLS) as described in the main text. Models [1], [2] and [4] in Panel (A)
contain T − 1 year dummies (in [4] in first differences). We do not the estimates on the cross-section averages for
the CCEP (Panel (A), [3]) and CMG estimators (Panel B, [4] and [5]) to save space.
For all diagnostic tests (except RMSE) we report p-values: (i) The null hypothesis for the Wald tests is constant
returns. (ii) The F -tests in the FE and CCEP regressions maintain the null that fixed effects do not differ across
countries. (iii) ‘I(1)’ reports results for a Pesaran (2007) CIPS test with 2 lags, null of nonstationarity (full results
available on request). (iv) The Pesaran (2004) CD test has the null of cross-section independence. Due to data
restrictions (unbalanced panel with missing observations) we are forced to drop 2 (8) countries from the sample
to compute this test for the levels (FD) residuals. (v) RMSE is the root mean squared error.
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Figure 1: Evolution of average TFP
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